摘要:
A method of measuring a damaged structure formed on a semiconductor wafer using optical metrology, the method includes obtaining a measured diffraction signal from a damaged periodic structure. A hypothetical profile of the damaged periodic structure is defined. The hypothetical profile having an undamaged portion, which corresponds to an undamaged area of a first material in the damaged periodic structure, and a damaged portion, which corresponds to a damaged area of the first material in the damaged periodic structure. The undamaged portion and the damaged portion have different properties associated with them. A simulated diffraction signal is calculated for the hypothetical damaged periodic structure using the hypothetical profile. The measured diffraction signal is compared to the simulated diffraction signal. If the measured diffraction signal and the simulated diffraction signal match within a matching criterion, then a damage amount for the damaged periodic structure is established based on the damaged portion of the hypothetical profile used to calculate the simulated diffraction signal.
摘要:
A method of assessing damage of a dual damascene structure includes obtaining a wafer after the wafer has been processed using a dual damascene process. A first damage-assessment procedure is performed on the wafer using an optical metrology process to gather damage-assessment data for a first set of measurements sites on the wafer. For each measurement site in the first set of measurement sites, the optical metrology process determines an amount of damage of a damaged area of a periodic grating in the measurement site. The damage-assessment data includes the amount of damage determined by the optical metrology process. A first damage-assessment map is created for the dual damascene process. The first damage-assessment includes the damage-assessment data and the locations of the first set of measurement sites on the wafer. One or more values in the damage-assessment map are compared to damage-assessment limits established for the dual damascene process to identify the wafer as a damaged or undamaged wafer.
摘要:
A method of assessing damage of a dual damascene structure includes obtaining a wafer after the wafer has been processed using a dual damascene process. A first damage-assessment procedure is performed on the wafer using an optical metrology process to gather damage-assessment data for a first set of measurements sites on the wafer. For each measurement site in the first set of measurement sites, the optical metrology process determines an amount of damage of a damaged area of a periodic grating in the measurement site. The damage-assessment data includes the amount of damage determined by the optical metrology process. A first damage-assessment map is created for the dual damascene process. The first damage-assessment includes the damage-assessment data and the locations of the first set of measurement sites on the wafer. One or more values in the damage-assessment map are compared to damage-assessment limits established for the dual damascene process to identify the wafer as a damaged or undamaged wafer.
摘要:
A method of measuring a damaged structure formed on a semiconductor wafer using optical metrology includes directing an incident beam on the damaged structure. A diffracted beam is received from the damaged structure. The received diffracted beam is processed to determine a profile of an undamaged portion of the damaged structure and to measure an amount of dielectric damage of the damaged structure.
摘要:
A method of measuring a damaged structure formed on a semiconductor wafer using optical metrology includes directing an incident beam on the damaged structure. A diffracted beam is received from the damaged structure. The received diffracted beam is processed to determine a profile of an undamaged portion of the damaged structure and to measure an amount of dielectric damage of the damaged structure.
摘要:
A method for implementing FDC in an APC system including receiving an FDC model from memory; providing the FDC model to a process model calculation engine; computing a vector of predicted dependent process parameters using the process model calculation engine; receiving a process recipe comprising a set of recipe parameters, providing the process recipe to a process module; executing the process recipe to produce a vector of measured dependent process parameters; calculating a difference between the vector of predicted dependent process parameters and the vector of measured dependent process parameters; comparing the difference to a threshold value; and declaring a fault condition when the difference is greater than the threshold value.
摘要:
A method for implementing FDC in an APC system including receiving an FDC model from memory; providing the FDC model to a process model calculation engine; computing a vector of predicted dependent process parameters using the process model calculation engine; receiving a process recipe comprising a set of recipe parameters, providing the process recipe to a process module; executing the process recipe to produce a vector of measured dependent process parameters; calculating a difference between the vector of predicted dependent process parameters and the vector of measured dependent process parameters; comparing the difference to a threshold value; and declaring a fault condition when the difference is greater than the threshold value.
摘要:
A method of creating a library for measuring a plurality of damaged structures formed on a semiconductor wafer using optical metrology includes directing an incident beam on a first damaged structure. The first damaged structure was formed by modifying at least one process parameter in a dual damascene procedure. A diffracted beam is received from the first damaged structure. A measured diffraction signal is obtained based on the received diffracted beam. A first simulated diffraction signal is calculated. The first simulated diffraction signal corresponds to a hypothetical profile of the first damaged structure. The hypothetical profile includes an undamaged dielectric portion and a damaged dielectric portion. The measured diffraction signal is compared to the first simulated diffraction signal. If the measured diffraction signal and the first simulated diffraction signal match within a matching criterion, then the first simulated diffraction signal, the hypothetical profile of the first damaged structure, and an amount of dielectric damage corresponding to the damaged dielectric portion of the hypothetical profile are stored in a library.
摘要:
A method of creating a library for measuring a plurality of damaged structures formed on a semiconductor wafer using optical metrology includes directing an incident beam on a first damaged structure. The first damaged structure was formed by modifying at least one process parameter in a dual damascene procedure. A diffracted beam is received from the first damaged structure. A measured diffraction signal is obtained based on the received diffracted beam. A first simulated diffraction signal is calculated. The first simulated diffraction signal corresponds to a hypothetical profile of the first damaged structure. The hypothetical profile includes an undamaged dielectric portion and a damaged dielectric portion. The measured diffraction signal is compared to the first simulated diffraction signal. If the measured diffraction signal and the first simulated diffraction signal match within a matching criterion, then the first simulated diffraction signal, the hypothetical profile of the first damaged structure, and an amount of dielectric damage corresponding to the damaged dielectric portion of the hypothetical profile are stored in a library.
摘要:
A method of measuring a damaged structure formed on a semiconductor wafer using optical metrology, the method includes obtaining a measured diffraction signal from a damaged periodic structure. A hypothetical profile of the damaged periodic structure is defined. The hypothetical profile having an undamaged portion, which corresponds to an undamaged area of a first material in the damaged periodic structure, and a damaged portion, which corresponds to a damaged area of the first material in the damaged periodic structure. The undamaged portion and the damaged portion have different properties associated with them. A simulated diffraction signal is calculated for the hypothetical damaged periodic structure using the hypothetical profile. The measured diffraction signal is compared to the simulated diffraction signal. If the measured diffraction signal and the simulated diffraction signal match within a matching criterion, then a damage amount for the damaged periodic structure is established based on the damaged portion of the hypothetical profile used to calculate the simulated diffraction signal.