摘要:
A method of fabricating a patterned magnetic recording medium, comprises steps of: (a) providing a layer stack including an uppermost non-magnetic interlayer; (b) forming a resist layer on the interlayer; (c) forming a first pattern comprising a first group of recesses extending through the resist layer and exposing a first group of spaced apart surface portions of the interlayer; (d) filling the first group of recesses with a layer of a hard mask material; (e) selectively removing the resist layer to form a second pattern comprising a second group of recesses extending through the hard mask layer and exposing a second group of spaced apart surface portions of the interlayer; and (f) filling the second group of recesses with a layer of a magnetically hard material forming a magnetic recording layer.
摘要:
One preferred method for use in making a device structure with use of the resist channel shrinking solution includes the steps of forming a first pedestal portion within a channel of a patterned resist; applying a resist channel shrinking solution comprising a resist channel shrinking film and corrosion inhibitors within the channel of the patterned resist; baking the resist channel shrinking solution over the patterned resist to thereby reduce a width of the channel of the patterned resist; removing the resist channel shrinking solution; and forming a second pedestal portion within the reduced-width channel of the patterned resist. Advantageously, the oxide layer and the corrosion inhibitors of the resist channel shrinking solution reduce corrosion in the pedestal during the act of baking the resist channel shrinking solution.
摘要:
A field emission source produces a charged particle beam that can be electrostatically aligned with the optical axis. Quadrupole (or higher multipole) centering electrodes approximately centered on the optical axis are placed between the emitter and the extraction electrode. By applying centering potentials of equal amplitude and opposite polarity on opposing elements of the centering electrodes, an electrostatic deflection field is created near the optical axis. The electrostatic deflection field aligns the charged particle beam with the optical axis thereby obviating the need to mechanically align the emitter with the optical axis. A second set of centering electrodes may be used to deflect the charged particle beam back and to ensure that the charged particle beam is parallel with the optical axis. Further, the extraction electrode may be split into a quadrupole arrangement with the extraction and centering potentials superimposed.