摘要:
An object of the present invention is to provide a coherent light source with limitations on the wavelength of emitted light being relaxed. The coherent light source of the present invention is a coherent light source for simultaneously emitting a first light (3) and a second light (4) having a wavelength shorter than that of the first light (3), including: a light source main body emitting at least the first light (3); a mirror (5) which transmits or reflects the first light (3); and a functional film (6) provided on at least a part of the mirror (5). The functional film (6) has a photocatalytic effect to be induced by the second light (4).
摘要:
In a coherent light source in which limitations on the wavelength of emitted light are relaxed, a coherent light source for simultaneously emitting a first light (3) and a second light (4) having a wavelength shorter than that of the first light (3), includes: a light source main body emitting at least the first light (3); a mirror (5) which transmits or reflects the first light (3); and a functional film (6) provided on at least a part of the mirror (5). The functional film (6) has a photocatalytic effect to be induced by the second light (4).
摘要:
In a semiconductor laser device (10) having different facet reflectivities, an electrode disposed on a stripe ridge (107a) is divided into four electrode parts (1), (2), (3), and (4), and a larger injection current is injected to an electrode part that is closer to a light emission facet side. Further, a carrier density distribution in an active layer that is opposed to the stripe ridge can be matched to a light intensity distribution in the active layer, thereby preventing degradation in high output characteristic due to destabilization of a transverse mode and reduction in gain which are caused by spatial hole burning.
摘要:
According to the present invention, in a semiconductor laser device (10) having different facet reflectivities, an electrode disposed on a stripe ridge (107a) is divided into four electrode parts (1), (2), (3), and (4), and a larger injection current is injected to an electrode part that is closer to a light emission facet side. According to this semiconductor laser device, a carrier density distribution in an active layer that is opposed to the stripe ridge can be matched to a light intensity distribution in the active layer, thereby preventing degradation in high output characteristic due to destabilization of transverse mode and reduction in gain which are caused by spatial hole burning.
摘要:
A light source of the present invention includes: a semiconductor light emitting device which has a light emitting face and emits light from part of the light emitting face; a container which has a light transmitting window for transmitting the light and accommodates the semiconductor light emitting device; and a gettering portion for performing gettering of a material containing at least one of carbon and silicon. The gettering portion is positioned, in the container, in a region other than the part of the light emitting face of the semiconductor light emitting device.
摘要:
A light source of the present invention includes: a semiconductor light emitting device which has a light emitting face and emits light from part of the light emitting face; a container which has a light transmitting window for transmitting the light and accommodates the semiconductor light emitting device; and a gettering portion for performing gettering of a material containing at least one of carbon and silicon. The gettering portion is positioned, in the container, in a region other than the part of the light emitting face of the semiconductor light emitting device.
摘要:
A light source of the present invention includes: a semiconductor light emitting device which has a light emitting face and emits light from part of the light emitting face; a container which has a light transmitting window for transmitting the light and accommodates the semiconductor light emitting device; and a gettering portion for performing gettering of a material containing at least one of carbon and silicon. The gettering portion is positioned, in the container, in a region other than the part of the light emitting face of the semiconductor light emitting device.
摘要:
The present invention provides an acoustooptic device usable even with light in the ultraviolet region, free from laser damage and optical damage, and excellent in acoustooptic performance and an optical imaging apparatus using the same. The acoustooptic device according to the present invention includes a high-frequency signal input part (65), a transducer part (64), and an acoustooptic medium (6). A high-frequency signal input from the high-frequency signal input part (65) is converted into a mechanical vibration by the transducer part (64), and an optical characteristic of the acoustooptic medium (6) varies depending on the mechanical vibration. The acoustooptic medium is formed of a Group III nitride crystal. The optical imaging apparatus according to the present invention includes a light source, an acoustooptic device, a driving circuit, and an image plane. Light from the light source is diffracted by the acoustooptic device in accordance with a signal from the driving circuit and the resultant diffracted light forms an image on the image plane. An acoustooptic medium of the acoustooptic device is formed of a Group III nitride crystal.
摘要:
A manufacturing apparatus of Group III nitride crystals and a method for manufacturing Group III nitride crystals are provided, by which high quality crystals can be manufactured. For instance, crystals are grown using the apparatus of the present invention as follows. A crystal raw material (131) and gas containing nitrogen are introduced into a reactor vessel (120), to which heat is applied by a heater (110), and crystals are grown in an atmosphere of pressure applied thereto. The gas is introduced from a gas supplying device (180) to the reactor vessel (120) through a gas inlet of the reactor vessel, and then is exhausted to the inside of a pressure-resistant vessel (102) through a gas outlet of the reactor vessel. Since the gas is introduced directly to the reactor vessel (120) without passing through the pressure-resistant vessel (102), the mixture of impurities attached to the pressure-resistant vessel (102) and the like into the site of the crystal growth can be prevented. Further, since the gas flows through the reactor vessel (120), there is no aggregation of an evaporating alkali metal, etc., at the gas inlet or the like, and such an alkali metal does not flow into the gas supplying device (180). As a result, the quality of Group III nitride crystals obtained can be improved.
摘要:
The present invention provides a method of manufacturing Group III nitride crystals that are of high quality, are manufactured efficiently, and are useful and usable as a substrate for semiconductor manufacturing processes. A semiconductor layer that is made of a semiconductor and includes crystal-nucleus generation regions at its surface is formed. The semiconductor is expressed by a composition formula of AluGavIn1-u-vN (where 0≦u≦1, 0≦v≦1, and u+v≦1). Group III nitride crystals then are grown on the semiconductor layer by bringing the crystal-nucleus generation regions of the semiconductor layer into contact with a melt in an atmosphere including nitrogen. The melt contains nitrogen, at least one Group III element selected from the group consisting of gallium, aluminum, and indium, and at least one of alkali metal and alkaline-earth metal.
摘要翻译:本发明提供一种制造高品质的III族氮化物晶体的方法,其有效制造,并且可用作半导体制造工艺的基板。 形成由半导体构成的半导体层,其表面具有晶核生成区域。 半导体由以下组成式表示:在1-uv N中(其中0 <= u <= 1,0,..., <= v <= 1,u + v <= 1)。 然后通过在包括氮气的气氛中使半导体层的晶核生成区域与熔体接触,在半导体层上生长III族氮化物晶体。 熔体含有氮,至少一种选自镓,铝和铟的III族元素,以及碱金属和碱土金属中的至少一种。