Abstract:
A broad-spectrum laser for use in a MEMS laser scanning display device is provided. In one example, the broad-spectrum laser includes a laser diode emitter with plural quantum wells each having a different spectral peak. In another example, the broad-spectrum laser includes a laser diode emitter with a tunable absorber to achieve a broadened emissions spectrum. In another example, the broad-spectrum laser includes a laser diode emitter array having plural individual emitters with different spectral peaks.
Abstract:
A monolithically integrated optical device. The device has a gallium and nitrogen containing substrate member having a surface region configured on either a non-polar or semi-polar orientation. The device also has a first waveguide structure configured in a first direction overlying a first portion of the surface region. The device also has a second waveguide structure integrally configured with the first waveguide structure. The first direction is substantially perpendicular to the second direction.
Abstract:
A laser device includes a silicon substrate, a buffer layer on the silicon substrate, a laser cavity on the buffer layer including a first active region based on group III-V semiconductor quantum dots, and a semiconductor optical amplifier that is integrated with the laser cavity on the buffer layer, includes a second active region based on group III-V semiconductor quantum dots, and amplifies light emitted from the laser cavity.
Abstract:
A semiconductor device includes an n-type ohmic contact layer, cathode and anode electrodes, p-type and n-type modulation doped quantum well (QW) structures, and first and second ion implant regions. The anode electrode is formed on the first ion implant region that contacts the p-type modulation doped QW structure and the cathode electrode is formed by patterning the first and second ion implant regions and the n-type ohmic contact layer. The semiconductor device is configured to operate as at least one of a diode laser and a diode detector. As the diode laser, the semiconductor device emits photons. As the diode detector, the semiconductor device receives an input optical light and generates a photocurrent.
Abstract:
An optical chip includes multiple laser cavities that each reflects a different portion of a light signal back and forth between reflective components. Each laser cavity guides one of the light signal portions through one or more waveguides. The one or more waveguides from different laser cavities being optically coupled to one another. A combiner receives the light signal portion from each of the laser cavities and combines the light signal portions into a light signal.
Abstract:
A system and method for triggering data acquisition in a semiconductor laser system including outputting electromagnetic energy from the semiconductor laser over a range of wavelengths according to a signaling path. The signaling path includes a plurality of discrete data inputs to the semiconductor laser for outputting electromagnetic energy over a range of wavelengths and the signaling path includes one or more perturbances in transitioning from one wavelength to another wavelength along the signaling path. A series of triggering signals are generated for input to a measurement system by the semiconductor laser. The series of triggering signals include a non-uniform period between at least a first triggering signal and an adjacent second triggering signal, and the non-uniform period corresponds to at least one perturbance. The electromagnetic energy output from the semiconductor laser is detected based on the series of triggering signals.
Abstract:
A semiconductor optical amplifier includes an n-type semiconductor layer, a p-type semiconductor layer an active layer provided between the n-type semiconductor layer and the p-type semiconductor layer, the active layer transmitting an optical signal and a current-injection part that injects current into the active layer via the n-type semiconductor layer and the p-type semiconductor layer, the active layer including a first active layer that includes AlGaInAs, and a second active layer that includes GaInAsP, the second active layer provided closer to an output side than the first active layer, and the first active layer and the second active layer being butt-jointed.
Abstract:
A method for manufacturing a bi-section semiconductor laser device includes the steps of (A) forming a stacked structure obtained by stacking, on a substrate in sequence, a first compound semiconductor layer of a first conductivity type, a compound semiconductor layer that constitutes a light-emitting region and a saturable absorption region, and a second compound semiconductor layer of a second conductivity type; (B) forming a belt-shaped second electrode on the second compound semiconductor layer; (C) forming a ridge structure by etching at least part of the second compound semiconductor layer using the second electrode as an etching mask; and (D) forming a resist layer for forming a separating groove in the second electrode and then forming the separating groove in the second electrode by wet etching so that the separating groove separates the second electrode into a first portion and a second portion.
Abstract:
A laser diode element assembly includes: a laser diode element; and a light reflector, in which the laser diode element includes (a) a laminate structure body configured by laminating, in order, a first compound semiconductor layer of a first conductivity type made of a GaN-based compound semiconductor, a third compound semiconductor layer made of a GaN-based compound semiconductor and including a light emission region, and a second compound semiconductor layer of a second conductivity type made of a GaN-based compound semiconductor, the second conductivity type being different from the first conductivity type, (b) a second electrode formed on the second compound semiconductor layer, and (c) a first electrode electrically connected to the first compound semiconductor layer, the laminate structure body includes a ridge stripe structure, and a minimum width Wmin and a maximum width Wmax of the ridge stripe structure satisfy 1
Abstract:
An edge-emitting semiconductor laser is specified. A semiconductor body includes an active zone suitable for producing electromagnetic radiation. At least two facets on the active zone form a resonator. At least two contact points are spaced apart from one another in a lateral direction by at least one intermediate region and are mounted on an outer face of the semiconductor body.