Abstract:
Disclosed herein are microorganisms containing exogenous or heterologous nucleic acid sequences, wherein the microorganisms are capable of growing on gaseous carbon dioxide, gaseous hydrogen, syngas, or combinations thereof. In some embodiments the microorganisms are chemotrophic bacteria that produce or secrete at least 10% of lipid by weight. Also disclosed are methods of fixing gaseous carbon into organic carbon molecules useful for industrial processes. Also disclosed are methods of manufacturing chemicals or producing precursors to chemicals useful in jet fuel, diesel fuel, and biodiesel fuel. Exemplary chemicals or precursors to chemicals useful in fuel production are alkanes, alkenes, alkynes, fatty acid alcohols, fatty acid aldehydes, desaturated hydrocarbons, unsaturated fatty acids, hydroxyl acids, or diacids with carbon chains between six and thirty carbon atoms long. Also disclosed are microorganisms and methods using disclosed microorganisms for the production of butanediol and its chemical precursors in low-oxygen or anaerobic fermentation. Also disclosed are microorganisms and methods using disclosed microorganisms for generating hydroxylated fatty acids in microbes through the transfer of enzymes that are known to hydroxylate fatty acids in plants or microbes. Also disclosed are microorganisms and methods using disclosed microorganisms for the production of shorter-chain fatty acids in microbes through the introduction of exogenous fatty acyl-CoA binding proteins.
Abstract:
Disclosed herein are microorganisms containing exogenous or heterologous nucleic acid sequences, wherein the microorganisms are capable of growing on gaseous carbon dioxide, gaseous hydrogen, syngas, or combinations thereof. In some embodiments the microorganisms are chemotrophic bacteria that produce or secrete at least 10% of lipid by weight. Also disclosed are methods of fixing gaseous carbon into organic carbon molecules useful for industrial processes. Also disclosed are methods of manufacturing chemicals or producing precursors to chemicals useful in jet fuel, diesel fuel, and biodiesel fuel. Exemplary chemicals or precursors to chemicals useful in fuel production are alkanes, alkenes, alkynes, fatty acid alcohols, fatty acid aldehydes, desaturated hydrocarbons, unsaturated fatty acids, hydroxyl acids, or diacids with carbon chains between six and thirty carbon atoms long. Also disclosed are microorganisms and methods using disclosed microorganisms for the production of butanediol and its chemical precursors in low-oxygen or anaerobic fermentation. Also disclosed are microorganisms and methods using disclosed microorganisms for generating hydroxylated fatty acids in microbes through the transfer of enzymes that are known to hydroxylate fatty acids in plants or microbes. Also disclosed are microorganisms and methods using disclosed microorganisms for the production of shorter-chain fatty acids in microbes through the introduction of exogenous fatty acyl-CoA binding proteins.
Abstract:
Disclosed herein are microorganisms containing exogenous or heterologous nucleic acid sequences, wherein the microorganisms are capable of growing on gaseous carbon dioxide, gaseous hydrogen, syngas, or combinations thereof. In some embodiments the microorganisms are chemotrophic bacteria that produce or secrete at least 10% of lipid by weight. Also disclosed are methods of fixing gaseous carbon into organic carbon molecules useful for industrial processes. Also disclosed are methods of manufacturing chemicals or producing precursors to chemicals useful in jet fuel, diesel fuel, and biodiesel fuel. Exemplary chemicals or precursors to chemicals useful in fuel production are alkanes, alkenes, alkynes, fatty acid alcohols, fatty acid aldehydes, desaturated hydrocarbons, unsaturated fatty acids, hydroxyl acids, or diacids with carbon chains between six and thirty carbon atoms long. Also disclosed are microorganisms and methods using disclosed microorganisms for the production of butanediol and its chemical precursors in low-oxygen or anaerobic fermentation. Also disclosed are microorganisms and methods using disclosed microorganisms for generating hydroxylated fatty acids in microbes through the transfer of enzymes that are known to hydroxylate fatty acids in plants or microbes. Also disclosed are microorganisms and methods using disclosed microorganisms for the production of shorter-chain fatty acids in microbes through the introduction of exogenous fatty acyl-CoA binding proteins.
Abstract:
Compositions and methods for a hybrid biological and chemical process utilizing chemotrophic microorganisms that converts syngas and/or gaseous CO2 and/or a mixture of CO2 gas and H2 gas into one or more desaturated hydrocarbons, unsaturated fatty acids, hydroxy acids, or diacids.
Abstract:
Engineered microorganisms are provided that convert gaseous substrates, such as producer gas, into limonene. In some embodiments, limonene is pumped out of the cell via an efflux pump. In some embodiments, limonene, produced as described herein, is converted through catalytic dimerization into jet fuel. Producer gas used in the processes described herein for production of limonene may be derived from sources that include gasification of waste feedstock and/or biomass residue, waste gas from industrial processes, or natural gas, biogas, or landfill gas.
Abstract:
Disclosed herein are microorganisms containing exogenous or heterologous nucleic acid sequences, wherein the microorganisms are capable of growing on gaseous carbon dioxide, gaseous hydrogen, syngas, or combinations thereof. In some embodiments the microorganisms are chemotrophic bacteria that produce or secrete at least 10% of lipid by weight. Also disclosed are methods of fixing gaseous carbon into organic carbon molecules useful for industrial processes. Also disclosed are methods of manufacturing chemicals or producing precursors to chemicals useful in jet fuel, diesel fuel, and biodiesel fuel. Exemplary chemicals or precursors to chemicals useful in fuel production are alkanes, alkenes, alkynes, fatty acid alcohols, fatty acid aldehydes, desaturated hydrocarbons, unsaturated fatty acids, hydroxyl acids, or diacids with carbon chains between six and thirty carbon atoms long. Also disclosed are microorganisms and methods using disclosed microorganisms for the production of butanediol and its chemical precursors in low-oxygen or anaerobic fermentation. Also disclosed are microorganisms and methods using disclosed microorganisms for generating hydroxylated fatty acids in microbes through the transfer of enzymes that are known to hydroxylate fatty acids in plants or microbes. Also disclosed are microorganisms and methods using disclosed microorganisms for the production of shorter-chain fatty acids in microbes through the introduction of exogenous fatty acyl-CoA binding proteins.
Abstract:
Disclosed herein are microorganisms capable of growing on crude glycerol and/or glycerol and/or methanol, or combinations thereof. In some embodiments the microorganisms are knallgas bacteria that produce or secrete at least 10% of lipid by weight. Also disclosed are methods of converting crude glycerol and/or glycerol and/or methanol produced as byproduct of processes including but not limited to biodiesel production, into organic carbon molecules such as triacylglycerol useful for industrial processes including but not limited to the production of additional biodiesel. Also disclosed are methods of manufacturing chemicals or producing precursors to chemicals useful in oleochemicals, jet fuel, diesel fuel, and biodiesel fuel. Exemplary chemicals or precursors to chemicals useful in fuel and/or oleochemical production are alkanes, alkenes, alkynes, fatty acid alcohols, fatty acid aldehydes, methyl esters, ethyl esters, alkyl esters, with carbon chains between five and twenty four carbon atoms long.
Abstract:
Engineered microorganisms are provided that convert gaseous substrates, such as producer gas, into limonene. In some embodiments, limonene is pumped out of the cell via an efflux pump. In some embodiments, limonene, produced as described herein, is converted through catalytic dimerization into jet fuel. Producer gas used in the processes described herein for production of limonene may be derived from sources that include gasification of waste feedstock and/or biomass residue, waste gas from industrial processes, or natural gas, biogas, or landfill gas.
Abstract:
Disclosed herein are microorganisms capable of growing on crude glycerol and/or glycerol and/or methanol, or combinations thereof. In some embodiments the microorganisms are knallgas bacteria that produce or secrete at least 10% of lipid by weight. Also disclosed are methods of converting crude glycerol and/or glycerol and/or methanol produced as byproduct of processes including but not limited to biodiesel production, into organic carbon molecules such as triacylglycerol useful for industrial processes including but not limited to the production of additional biodiesel. Also disclosed are methods of manufacturing chemicals or producing precursors to chemicals useful in oleochemicals, jet fuel, diesel fuel, and biodiesel fuel. Exemplary chemicals or precursors to chemicals useful in fuel and/or oleochemical production are alkanes, alkenes, alkynes, fatty acid alcohols, fatty acid aldehydes, methyl esters, ethyl esters, alkyl esters, with carbon chains between five and twenty four carbon atoms long.