摘要:
The base station apparatus 10 stores apprise status data of certain data to each in-vehicle apparatus within a zone managed by the base station apparatus 10, transmits apprise status data stored in the status storage to other base station apparatuses, updates apprise status data stored in the status storage in accordance with a status of apprise to an in-vehicle apparatus within the zone managed by the base station apparatus 10 and/or apprise status data received from another base station apparatus, individually transmits unapprised data to an in-vehicle apparatus by referring to apprise status data stored in the status storage, requests distribution of the data to the center apparatus when the base station apparatus 10 has not received the data to be apprised, and upon receiving the data, transmits the data to an in-vehicle apparatus.
摘要:
A traffic management system manages, distributes, and controls various traveling states of vehicles at a high quality level. A vehicle-mounted unit performs an interconnection process for user authentication when entering a predetermined radio-wave zone. A radio unit disposed on a road sends interconnection process completion information to a center device when the interconnection process for connection to the vehicle is completed. If the vehicle does not connect to the radio unit after elapsed of a predicted time at which the vehicle is expected to travel across the radio unit, then the radio unit sends an overtime to the center device. The interconnection process completion information is received, the center device calculates a predicted time at which the vehicle is expected to pass across a radio unit, and sends the predicted time to the radio unit. When the overtime is received, the center device determines whether a fault has occurred or not. When it is judged that the fault has occurred, the center device sends alarm information to vehicles traveling near a site where the fault has occurred on the vehicle.
摘要:
The base station apparatus 10 stores apprise status data of certain data to each in-vehicle apparatus within a zone managed by the base station apparatus 10, transmits apprise status data stored in the status storage to other base station apparatuses, updates apprise status data stored in the status storage in accordance with a status of apprise to an in-vehicle apparatus within the zone managed by the base station apparatus 10 and/or apprise status data received from another base station apparatus, individually transmits unapprised data to an in-vehicle apparatus by referring to apprise status data stored in the status storage, requests distribution of the data to the center apparatus when the base station apparatus 10 has not received the data to be apprised, and upon receiving the data, transmits the data to an in-vehicle apparatus.
摘要:
A traffic management system manages, distributes, and controls various traveling states of vehicles at a high quality level. A vehicle-mounted unit performs an interconnection process for user authentication when entering a predetermined radio-wave zone. A radio unit disposed on a road sends interconnection process completion information to a center device when the interconnection process for connection to the vehicle is completed. If the vehicle does not connect to the radio unit after elapsed of a predicted time at which the vehicle is expected to travel across the radio unit, then the radio unit sends an overtime to the center device. The interconnection process completion information is received, the center device calculates a predicted time at which the vehicle is expected to pass across a radio unit, and sends the predicted time to the radio unit. When the overtime is received, the center device determines whether a fault has occurred or not. When it is judged that the fault has occurred, the center device sends alarm information to vehicles traveling near a site where the fault has occurred on the vehicle.
摘要:
An in-vehicle device receives broadcast data from a base station A, calculates a checksum of the received broadcast data, and transmits the checksum to a base station B. The base station B determines whether the checksum received from the in-vehicle device is correct. If the checksum is not correct, the base station B instructs a base station C to retransmit the broadcast data, and the base station C retransmits the broadcast data to the in-vehicle device.
摘要:
A band saw blade includes left and right set teeth which are set in right and left directions with respect to a running direction of the band saw blade, and a straight tooth which is not set. A ridge line at a tip of each of the set teeth and the straight tooth is formed into a convex curved line protruding most at a central portion in a thickness direction of the saw tooth. The ridge lines at the tips of the left and right set teeth and of the straight tooth are continuous with one another when viewed from the running direction of the band saw blade. A height difference between the ridge lines of the saw teeth is in a range of 0.02 mm to 0.1 mm. Meanwhile, a height difference between an inner corner portion of each of the left and right set teeth and the central portion in the thickness direction of the ridge line of the straight tooth is in a range of 0 mm to 0.03 mm.
摘要:
A band saw blade includes multiple saw teeth having a straight tooth and right and left set teeth, and also includes a gullet portion provided between the saw teeth. A rake surface of each of the saw teeth is provided with a chip curler portion formed into an arc shape at an entire range of approximately 90° to form a chip generated at the time of cutting a work into a small rolled shape before the chip comes into contact with a bottom portion of the gullet portion. A chip non-contact surface to be kept out of contact with the chip is formed to have either a flat surface or a convex surface between the chip curler portion and the bottom portion of the gullet portion, and a dent portion is formed between the chip non-contact surface and the gullet bottom portion, the dent portion recessed from the chip non-contact surface in an opposite direction to a moving direction of the band saw blade in order to increase a radius of a concave curved surface constituting a back side of the gullet bottom portion. A flat portion for dispersing stress concentration is provided at an innermost portion of the gullet portion.
摘要:
Concave/convex portions are consecutively formed on a back of a band saw blade. The concave/convex portions include concave portions engageable with and disengageable from a backup guide of a band saw guide unit, and convex portions adjacent to the concave portions. A length of each of the concave/convex portions is configured to be equal to or smaller than four times a maximum pitch of a tooth top of each tooth.
摘要:
An electrical connection testing device is provided with a connector holder (12), first and second probe holders (13, 14) which are successively arranged such that the connector holder (12) and the second probe holder are movable toward and away from the connector holder (12). A pushing mechanism (18) for pushing a receiving surface (14d) of the second probe holder (14) at the opposite side from the connector holder (12) is so coupled with the second probe holder (14) as to be movable toward and away from the second probe holder (14). The second probe holder (14) and the connector holder (12) are moved according to the movement of the pushing mechanism (18), thereby being positioned at testing positions (P1) where probes (16, 17) are inserted into testing holes (1a) of a connector (C) from opposite sides or at retracted positions (P2) where the connector can be taken out of a connector holder (12).
摘要:
A mobile terminal is carried by a moving object, and the mobile station is configured to perform wireless communications with a base terminal from among a plurality of base stations. The mobile station acquires a communication status between itself and at least a first base station and a second base station from among the plurality of base stations. The mobile station performs wireless communications with a base station from among the first base station and the second base station of which the communication status satisfies a communication condition that is most distant.