摘要:
The present invention relates to a semiconductor device including a Fin type field effect transistor (FET) having a protrusive semiconductor layer protruding from a substrate plane, a gate electrode formed so as to straddle the protrusive semiconductor layer, a gate insulating film between the gate electrode and the protrusive semiconductor layer, and source and drain regions provided in the protrusive semiconductor layer, wherein the semiconductor device has on a semiconductor substrate an element forming region having a Fin type FET, a trench provided on the semiconductor substrate for separating the element forming region from another element forming region, and an element isolation insulating film in the trench; the element forming region has a shallow substrate flat surface formed by digging to a depth shallower than the bottom surface of the trench and deeper than the upper surface of the semiconductor substrate, a semiconductor raised portion protruding from the substrate flat surface and formed of a part of the semiconductor substrate, and an insulating film on the shallow substrate flat surface; and the protrusive semiconductor layer of the Fin type FET is formed of a portion protruding from the insulating film of the semiconductor raised portion.
摘要:
A constant distance can be maintained between source/drain regions without providing a gate side wall by forming a gate electrode comprising an eaves structure, and a uniform dopant concentration is kept within a semiconductor by ion implantation. As a result, a FinFET excellent in element properties and operation properties can be obtained. A field effect transistor, wherein a gate structure body is a protrusion that protrudes toward source and drain regions sides in a channel length direction and has a channel length direction width larger than that of the part adjacent to the insulating film in a gate electrode, and the protrusion comprises an eaves structure formed by the protrusion that extends in a gate electrode extending direction on the top surface of the semiconductor layer.
摘要:
A field effect transistor comprising: a semiconductor layer projecting from the plane of a base; a gate electrode provided on opposite side surfaces of the semiconductor layer; a gate insulating film interposed between the gate electrode and the side surface of the semiconductor layer; and source/drain regions where a first conductivity type impurity is introduced, wherein the semiconductor layer has a channel forming region in a portion sandwiched between the source/drain regions, and has in the upper part of the semiconductor layer in the channel forming region a channel impurity concentration adjusting region of which the concentration of a second conductivity type impurity is higher than that in the lower part of the semiconductor layer, and in the channel impurity concentration adjusting region, a channel is formed in a side surface portion facing the gate insulating film of the semiconductor layer in the channel impurity concentration adjusting region in a state of operation in which a signal voltage is applied to the gate electrode.
摘要:
A constant distance can be maintained between source/drain regions without providing a gate side wall by forming a gate electrode comprising an eaves structure, and a uniform dopant concentration is kept within a semiconductor by ion implantation. As a result, a FinFET excellent in element properties and operation properties can be obtained. A field effect transistor, wherein a gate structure body is a protrusion that protrudes toward source and drain regions sides in a channel length direction and has a channel length direction width larger than that of the part adjacent to the insulating film in a gate electrode, and the protrusion comprises an eaves structure formed by the protrusion that extends in a gate electrode extending direction on the top surface of the semiconductor layer.
摘要:
A semiconductor device having SRAM cell units each comprising a pair of a first driving transistor and a second driving transistor, a pair of a first load transistor and a second load transistor, and a pair of a first access transistor and a second access transistor, wherein each of the transistors comprises a semiconductor layer projecting upward from a substrate plane, a gate electrode extending on opposite sides of the semiconductor layer so as to stride over a top of the semiconductor layer, a gate insulating film interposed between the gate electrode and the semiconductor layer, and a pair of source/drain areas formed in the semiconductor layer; and the first and second driving transistors each have a channel width larger than that of at least either each of the load transistors or each of the access transistors.
摘要:
A semiconductor device having SRAM cell units each comprising a pair of a first driving transistor and a second driving transistor, a pair of a first load transistor and a second load transistor, and a pair of a first access transistor and a second access transistor, wherein each of the transistors comprises a semiconductor layer projecting upward from a substrate plane, a gate electrode extending on opposite sides of the semiconductor layer so as to stride over a top of the semiconductor layer, a gate insulating film interposed between the gate electrode and the semiconductor layer, and a pair of source/drain areas formed in the semiconductor layer; and the first and second driving transistors each have a channel width larger than that of at least either each of the load transistors or each of the access transistors.
摘要:
A π gate FinFET structure having reduced variations in off-current and parasitic capacitance and a method for production thereof are provided. The structure of an element is improved so that an off-current suppressing capability can be exhibited more strongly. A field effect transistor, wherein a first insulating film and a semiconductor region are provided so as to protrude upward with respect to the flat surface of a base, the field effect transistor has a gate electrode, a gate insulating film and a source/drain region, and a channel is formed at least on the side surface of the semiconductor region, wherein that the first insulating film is provided on an etch stopper layer composed of a material having an etching rate lower than at least the lowermost layer of the first insulating film for etching under a predetermined condition.
摘要:
A constant distance can be maintained between source/drain regions without providing a gate side wall by forming a gate electrode including an eaves structure, and a uniform dopant concentration is kept within a semiconductor by ion implantation. As a result, a FinFET excellent in element properties and operation properties can be obtained. A field effect transistor, wherein a gate structure body is a protrusion that protrudes toward source and drain regions sides in a channel length direction and has a channel length direction width larger than that of the part adjacent to the insulating film in a gate electrode, and the protrusion includes an eaves structure formed by the protrusion that extends in a gate electrode extending direction on the top surface of the semiconductor layer.
摘要:
The present invention relates to a semiconductor device including a Fin type field effect transistor (FET) having a protrusive semiconductor layer protruding from a substrate plane, a gate electrode formed so as to straddle the protrusive semiconductor layer, a gate insulating film between the gate electrode and the protrusive semiconductor layer, and source and drain regions provided in the protrusive semiconductor layer, wherein the semiconductor device has on a semiconductor substrate an element forming region having a Fin type FET, a trench provided on the semiconductor substrate for separating the element forming region from another element forming region, and an element isolation insulating film in the trench; the element forming region has a shallow substrate flat surface formed by digging to a depth shallower than the bottom surface of the trench and deeper than the upper surface of the semiconductor substrate, a semiconductor raised portion protruding from the substrate flat surface and formed of a part of the semiconductor substrate, and an insulating film on the shallow substrate flat surface; and the protrusive semiconductor layer of the Fin type FET is formed of a portion protruding from the insulating film of the semiconductor raised portion.
摘要:
A semiconductor device having SRAM cell units each comprising a pair of driving transistors, a pair of load transistors and a pair of access transistors, in which each of the transistors has a semiconductor layer projecting upward from a substrate plane, a gate electrode extending on opposite sides of the semiconductor layer so as to stride over a top of the semiconductor layer, a gate insulting film interposed between the gate electrode and the semiconductor layer, and a pair of source/drain areas formed in the semiconductor layer; a longitudinal direction of each semiconductor layer extends along a first direction; and between the adjacent SRAM cell units in the first direction, the semiconductor layer in one of the corresponding transistors is located on a center line of the semiconductor layer in the other transistor which center line extends along the first direction.