摘要:
In a burner (1) for heat generation, the inflowing air (4) is first of all directed into a hollow conical swirl generator (3) which is surrounded by a mixing tube (2). This swirl generator (3) tapers in the direction of flow in such a way that a hollow cone results therefrom. Furthermore, the swirl generator (3) has tangential openings (6, 7) in the direction of flow, which are preferably designed as ducts through which the combustion air (5) flows out of the hollow space (16) into the mixing tube (2). In the region of the tangential openings (6, 7), nozzles (12, 13) are provided through which a fuel (14) is injected into the combustion air (5) flowing past there. A fuel, whether liquid or gaseous, may be supplied by further means in operative connection with the burner (1).
摘要:
In a premix burner having a swirl-stabilizing interior space (20) which is essentially formed by sectional shells (11, 12) nested one inside the other in a mutually offset manner as well as by a conically running inner body (13), one feed duct (11c, 12c) each extends upstream of the tangential air-inlet slots (11a, 12a) formed by the offset sectional shells, which feed duct (11c, 12c) is fitted at least with means (11d, 12d) for swirling an air flow (23) and with means for introducing a fuel (24). The introduction of the fuel is preferably arranged downstream of the means for swirling the air flow.
摘要:
The object of the invention is to provide a novel cone burner for gaseous and/or liquid fuels which has a reduced NOx and CO emission. According to the invention, this is achieved in that the sectional cone bodies (1, 2) have a common outlet diffuser (27) at their downstream end. They have a transition region (28) to the outlet diffuser (27), in which the size of the air-inlet slots (7, 8) decreases continuously in the direction (3) of flow. The outlet diffuser (27) is designed to be circular and without air-inlet slots (7, 8).
摘要:
In a double-cone burner, at least one row of nozzles (10) for a gaseous fuel containing highly reactive components and having a medium calorific value are arranged on the periphery of the partial conical bodies (1, 2) of the burner near the burner outlet at a distance of approximately 30% of the nominal burner diameter. In addition, there is a fuel conduit (11) and a distributing passage (17), placed in the region of the nozzles (10), for the highly reactive fuel. The gaseous fuel (15) containing highly reactive components is injected at high velocity through the nozzles (10), which have a diameter which is smaller than 1% of the nominal burner diameter, into the zones of high air velocity and the penetration depth and the direction of the fuel jets are matched to one another in such a way that ignition only takes place behind the burner, after mixing has occurred.
摘要:
In an annular combustion chamber for a gas turbine, a combustion-chamber dome (14) is arranged upstream of an air-cooled combustion chamber (10). A first portion of an air flow (46) which comes from the compressor is admixed as combustion air to the combustion operation and cooling ducts (22; 24) feed a second portion of the air flow (46) coming from the compressor as cooling air into the combustion chamber (10). In this case, the cooling ducts (22; 24), which run at least in sections along the combustion chamber (10), have an entry (23; 25) into the combustion-chamber dome (14). The cooling ducts (22; 24) are designed for damping combustion-chamber oscillations in such a way that the acoustic impedance at the entry (23; 25) of the cooling ducts (22; 24) into the combustion-chamber dome (14) is minimized.
摘要:
In a method of operating a plant with staged combustion, the first combustion stage (1a) is operated with a fuel/air mixture (3) whose air coefficient is larger than the overall air coefficient of the combustion system. The hot combustion gases (5) from the first combustion stage (1a) are mixed with an additional fuel/air mixture (4) whose air coefficient is smaller than the overall air coefficient of the combustion system, before the further combustion in the second stage (2a) takes place. Since hot-gas backmixing is no longer required in the second stage (2a) for the flame stabilization, this combined mixture burns without the formation of further NOx emissions.
摘要:
A mixing device for mixing two or more flowing fluids in a flow duct in which the fluids to be mixed flow along a dividing wall (22), includes a plurality of vortex generators mounted on a downstream end of the dividing wall. The vortex generators (9) have surfaces which project into the duct, and around which flow occurs freely. Each vortex generator includes two side surfaces connected at a lead connecting edge which stands perpendicularly to the dividing wall (22) and is the edge acted upon first by the flow. A top surface consists of two sectional top surfaces (1, 2) which are connected to one another via a top connecting edge (10). Downstream rear edges (5, 6) of the sectional top surfaces (1, 2) are oriented at an angle (.gamma.) with the dividing wall (22), as a result of which, the the rear edges (5, 6) lie on an opposite side of the dividing wall (22)), with respect to the side surfaces (11, 13). A base surface consists of two sectional base surfaces which are connected to one another by a base connecting edge and to the sectional top surfaces by the rear edges (5, 6).
摘要:
In a hydrogen reservoir having a housing with a hydrogen storage material arranged in the housing for absorbing and releasing hydrogen as needed, the hydrogen reservoir includes at least one unit having a porous body surrounding a container in which the hydrogen storage material is contained and a method is provided for charging the hydrogen reservoir with hydrogen from a hydrogen filling stations.
摘要:
In a hydrogen reservoir having a housing with a hydrogen storage material arranged in the housing for absorbing and releasing hydrogen as needed, the hydrogen reservoir includes at least one unit having a porous body surrounding a container in which the hydrogen storage material is contained and a method is provided for charging the hydrogen reservoir with hydrogen from a hydrogen filling stations.
摘要:
In a combustion device (10), particularly for driving gas turbines, comprising a plurality of burners (12, . . . , 15) of identical thermal power output, which work parallel to an axis (28) into a common combustion chamber (11), an effective suppression of thermoacoustic combustion instabilities is achieved in a simple way in that the burners (12, . . . , 15) are designed differently from one another in such a way that the flames (24, . . . , 27) or flame fronts generated by them are positioned so as to be distributed along the axis (28).