摘要:
A mixing device for mixing two or more flowing fluids in a flow duct in which the fluids to be mixed flow along a dividing wall (22), includes a plurality of vortex generators mounted on a downstream end of the dividing wall. The vortex generators (9) have surfaces which project into the duct, and around which flow occurs freely. Each vortex generator includes two side surfaces connected at a lead connecting edge which stands perpendicularly to the dividing wall (22) and is the edge acted upon first by the flow. A top surface consists of two sectional top surfaces (1, 2) which are connected to one another via a top connecting edge (10). Downstream rear edges (5, 6) of the sectional top surfaces (1, 2) are oriented at an angle (.gamma.) with the dividing wall (22), as a result of which, the the rear edges (5, 6) lie on an opposite side of the dividing wall (22)), with respect to the side surfaces (11, 13). A base surface consists of two sectional base surfaces which are connected to one another by a base connecting edge and to the sectional top surfaces by the rear edges (5, 6).
摘要:
A device for injecting fuels (4) into compressed gaseous media essentially comprises a cylindrical hollow body (24) with at least one fuel feed passage (2) and means for the introduction of compressed atomization air (5). A swirl chamber (1) is arranged in the interior of the hollow body (24), this swirl chamber being connected via at least one inlet opening (6) to the fuel feed passage (2). The cross-section of the swirl chamber (1) narrows in the direction of flow of the atomization air passed through the interior of the hollow body (24), thereby forming a cone (8). A dividing wall (20), which extends downstream at least as far as the center of the inlet openings (6), is arranged upstream of the swirl chamber (1), between the fuel in the swirl chamber (1) and the atomization air (5). A method for operating the device is furthermore described.
摘要:
A fuel lance for liquid and/or gaseous fuels for use in a combustion chamber includes a liquid fuel pipe extending along a lance center line and defining a liquid fuel passage, a gas pipe surrounding the liquid fuel pipe and forming therebetween a gas passage, and a lance outer shell surrounding the gas pipe and forming an air passage around the gas pipe for cooling air and atomizer air. At least one air/fuel nozzle is provided in a peripheral side of the lance outer shell at a downstream end of the fuel lance for air flow out of the air passage into the combustion chamber. At least one gas nozzle is provided in the gas pipe for gas flow out of the gas passage into the air passage, the gas nozzle is positioned relative to the air/fuel nozzle so that gas from the gas nozzle flows with air from the air passage through the at least one air/fuel nozzle into the combustion chamber. At least one liquid fuel nozzle is provided in the liquid fuel pipe for liquid fuel flow out of the liquid fuel passage, the liquid fuel nozzle being positioned relative to the gas nozzle and air/fuel nozzle so that liquid fuel from the liquid fuel nozzle flows through the air passage and, with the air, through the air/fuel nozzle into the combustion chamber.
摘要:
In a premix burner for the combustion of gaseous and/or liquid fuel, in which the fuel is injected as secondary flow into a gaseous, ducted main flow, the premix duct (20) through which flow occurs being annular and being defined by an inner (21a) and an outer cylinder wall (21b), and the main flow being guided via vortex generators (9, 9a) which generate longitudinal vortices without a recirculation area and of which a plurality are arranged next to one another over the periphery of the annular duct (20) on at least one duct wall (21), and means for injecting fuel being arranged directly downstream of the vortex generators (9, 9a) on the inner and/or outer duct wall (21a, 21b), the vortex generators (9, 9a) generate such vortices which leave behind a residual vortex after the complete mixing of the fuel with the air of the fuel/air mixture flow. In this case, the annular main flow duct (20) of constant height (H) has a length (L) downstream of the vortex generators (9) and the fuel injection which is in the region of 5 to 20 times its height (H). It subsequently widens to form a circular main flow duct.
摘要:
In a burner (1) for heat generation, the inflowing air (4) is first of all directed into a hollow conical swirl generator (3) which is surrounded by a mixing tube (2). This swirl generator (3) tapers in the direction of flow in such a way that a hollow cone results therefrom. Furthermore, the swirl generator (3) has tangential openings (6, 7) in the direction of flow, which are preferably designed as ducts through which the combustion air (5) flows out of the hollow space (16) into the mixing tube (2). In the region of the tangential openings (6, 7), nozzles (12, 13) are provided through which a fuel (14) is injected into the combustion air (5) flowing past there. A fuel, whether liquid or gaseous, may be supplied by further means in operative connection with the burner (1).
摘要:
A method for compressing gaseous fuel is disclosed. The method includes, ingesting gaseous fuel into a chamber, ingesting air into the chamber and mixing the gaseous fuel with the air, igniting and partially combusting the resulting mixture of gaseous fuel and air in a confined space such that a predominant fraction of the gaseous fuel is not combusted, causing an increased temperature and therefore an increased pressure of the fraction of the gaseous fuel which is not combusted, and discharging the resulting compressed gaseous fuel. Moreover, a compressor is provided including a casing, a rotor with at least three vanes, an inlet for gaseous fuel, an outlet for gaseous fuel, an air inlet and an igniter. The rotor is placed in the casing such that at least three variable-volume chambers part-bounded by the vanes are formed during a rotor revolution.
摘要:
A fuel injector arrangement for fluid fuel combustion apparatus comprises a conduit 31 for the flow of an airstream, a conduit 56 for the flow of fluid fuel to a housing 15 incorporating a fuel plenum chamber 25, the fuel plenum chamber 25 having at least one inlet orifice 22 and at least one outlet orifice 34 in substantially direct alignment, the inlet orifice(s) 22 being connected to the conduit 31 whereby, in use, air in the airstream flows into the plenum chamber to thereby force fuel out of the plenum chamber via the outlet orifice(s). The airstream may constitute a secondary airstream, there being, in use, a primary airstream which flows around and beyond the housing in a conduit 10 to receive the fuel forced out of the fuel plenum chamber.
摘要:
A method of establishing part-load operation is proposed for a turbine group. This gas turbine group consists essentially of a compressor unit (1), of an HP combustion chamber (4) downstream of the compressor unit (1), of an HP turbine (5) downstream of this HP combustion chamber (4), of an LP combustion chamber (8) operating by self-ignition and arranged downstream of the HP turbine (5), the hot gases (10) of which LP combustion chamber (8) being admitted to an LP turbine (11). The temperature at outlet from the HP turbine (5) remains essentially the same due to the reduction of the fuel quantity in the LP combustion chamber (8) to zero. Furthermore, the fuel quantity of the HP combustion chamber (4) remains approximately constant during the reduction of the fuel quantity in the LP combustion chamber (8) so that the temperature at inlet to the HP turbine (5) likewise remains constant.
摘要:
A flow distribution regulation arrangement in a cooling channel is provided. The flow distribution regulation arrangement includes a plurality of bimetallic elements adapted to adjust a local flow of a cooling medium in the cooling channel in response to a heat load onto the bimetallic elements, wherein the heat load originates from local boundary sub areas of the cooling channel.
摘要:
A fluidically-controlled valve is provided. The fluidically-controlled valve includes a main flow channel with a main flow entrance, a flow exit and a constricted channel section located between the main flow entrance and the flow exit. The fluidically-controlled valve also includes a control flow channel including a jet forming control entrance, a first branch channel, a second branch channel, a common channel section, and a convex channel wall. The common channel section follows the control entrance, the first branch channel emerges from the common channel section and leads to the main flow entrance, the second branch channel emerges from the common channel section and leads to the constricted channel section, and the convex channel wall extends from the common channel section into the first branch channel. The fluidically-controlled valve can be used in bypasses present in turbines or in swirlers of gas turbine combustors.