摘要:
A data transmission interconnect assembly capable of transmission speeds in excess of 40 Gbps in which, for example, a line-card is detachably coupled to a backplane using flexible flat cables that are bent to provide a continuous, smooth curve between the connected boards, and connected by a connection apparatus that employs cable-to-cable interface members that are transparent to the transmitted signal waves. Microspring interface members are formed on the contact structure pressed against the cables to provide interface arrangements that are smaller than a wavelength of the transmitted signal. A connector apparatus uses a cam mechanism to align the cables, and then to press the contact structure, having the microspring interface members formed thereon, against the cables. An alterative contact structure uses anisotropic conductive film.
摘要:
A data transmission interconnect assembly (e.g., a router) capable of transmission speeds in excess of 40 Gbps in which a line-card is detachably coupled to a backplane using flexible flat cables that are bent to provide a continuous, smooth curve between the connected boards, and connected by a connection apparatus that employs cable-to-cable interface members that are transparent to the transmitted signal waves. Microspring contact structures are formed on the cables, or on a contact structure pressed against the cables, to provide interface arrangements that are smaller than a wavelength of the transmitted signal. A connector apparatus uses a cam mechanism to align the cables, and then to press a contact structure, having micro spring interface members formed thereon, against the cables. An alterative contact structure uses anisotropic conductive film.
摘要:
Lithographically defined and etched spring structures are produced by various methods such that they avoid the formation of a plated metal wedge on an underside of the spring structure after release. A post is utilized to offset the spring from an underlying substrate by a distance greater than the thickness of the plated metal. A trench is etched into the substrate below the spring to provide clearance during deflection of the spring. Another spring includes a knee (bend) that provides the necessary clearance during deflection. A plating process is limited to the upper side of another spring. A released spring is used as a shadow mask for patterning resist that prevents wedge formation during plating. Various tip arrangements are disclosed that can be utilized with each spring structure
摘要:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
摘要:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
摘要:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
摘要:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
摘要:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
摘要:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
摘要:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.