摘要:
The present invention provides a technology capable of reducing an area occupied by a nonvolatile memory while improving the reliability of the nonvolatile memory. In a semiconductor device, the structure of a code flash memory cell is differentiated from that of a data flash memory cell. More specifically, in the code flash memory cell, a memory gate electrode is formed only over the side surface on one side of a control gate electrode to improve a reading speed. In the data flash memory cell, on the other hand, a memory gate electrode is formed over the side surfaces on both sides of a control gate electrode. By using a multivalued memory cell instead of a binary memory cell, the resulting data flash memory cell can have improved reliability while preventing deterioration of retention properties and reduce its area.
摘要:
A semiconductor device having a non-volatile memory is disclosed, whose disturb defect can be diminished or prevented. A memory cell of the non-volatile memory has a memory gate electrode formed over a main surface of a semiconductor substrate through an insulating film for charge storage. A first side wall is formed on a side face of the memory gate electrode, and at a side face of the first side wall, a second side wall is formed. On an upper surface of an n+-type semiconductor region for source in the memory cell there is formed a silicide layer whose end portion on the memory gate electrode MG side is defined by the second side wall.
摘要:
A semiconductor device having a non-volatile memory is disclosed, whose disturb defect can be diminished or prevented. A memory cell of the non-volatile memory has a memory gate electrode formed over a main surface of a semiconductor substrate through an insulating film for charge storage. A first side wall is formed on a side face of the memory gate electrode, and at a side face of the first side wall, a second side wall is formed. On an upper surface of an n+-type semiconductor region for source in the memory cell there is formed a silicide layer whose end portion on the memory gate electrode MG side is defined by the second side wall.
摘要:
A semiconductor device having a non-volatile memory is disclosed, whose disturb defect can be diminished or prevented. A memory cell of the non-volatile memory has a memory gate electrode formed over a main surface of a semiconductor substrate through an insulating film for charge storage. A first side wall is formed on a side face of the memory gate electrode, and at a side face of the first side wall, a second side wall is formed. On an upper surface of an n+-type semiconductor region for source in the memory cell there is formed a silicide layer whose end portion on the memory gate electrode MG side is defined by the second side wall.
摘要:
A semiconductor device having a non-volatile memory is disclosed, whose disturb defect can be diminished or prevented. A memory cell of the non-volatile memory has a memory gate electrode formed over a main surface of a semiconductor substrate through an insulating film for charge storage. A first side wall is formed on a side face of the memory gate electrode, and at a side face of the first side wall, a second side wall is formed. On an upper surface of an n+-type semiconductor region for source in the memory cell there is formed a silicide layer whose end portion on the memory gate electrode MG side is defined by the second side wall.
摘要:
The present invention provides a technology capable of reducing an area occupied by a nonvolatile memory while improving the reliability of the nonvolatile memory. In a semiconductor device, the structure of a code flash memory cell is differentiated from that of a data flash memory cell. More specifically, in the code flash memory cell, a memory gate electrode is formed only over the side surface on one side of a control gate electrode to improve a reading speed. In the data flash memory cell, on the other hand, a memory gate electrode is formed over the side surfaces on both sides of a control gate electrode. By using a multivalued memory cell instead of a binary memory cell, the resulting data flash memory cell can have improved reliability while preventing deterioration of retention properties and reduce its area.
摘要:
The present invention provides a technology capable of reducing an area occupied by a nonvolatile memory while improving the reliability of the nonvolatile memory. In a semiconductor device, the structure of a code flash memory cell is differentiated from that of a data flash memory cell. More specifically, in the code flash memory cell, a memory gate electrode is formed only over the side surface on one side of a control gate electrode to improve a reading speed. In the data flash memory cell, on the other hand, a memory gate electrode is formed over the side surfaces on both sides of a control gate electrode. By using a multivalued memory cell instead of a binary memory cell, the resulting data flash memory cell can have improved reliability while preventing deterioration of retention properties and reduce its area.
摘要:
The semiconductor device has: a first magnetoresistance element; a second magnetoresistance element. The first and second magnetoresistance elements each includes a free layer which can be changed in spin orientation therein and a pinned layer which is fixed in spin orientation therein. The first magnetoresistance element is coupled to a first transistor at the free layer, and to a first power-source terminal at the pinned layer. The second magnetoresistance element is coupled to a second transistor at the free layer, and to the first power-source terminal at the pinned layer. In this device, the reliability of stored data is increased by preventing an undesired resistance condition's change in a magnetoresistance memory cell.