摘要:
A method of detecting vitamin D in blood using laser desorption/ionization mass spectrometry (LDI-MS) and an apparatus therefor according to the present invention are not complicated in a measurement, do not require a number of measurement steps, and allow for easy measurement and collection of results in real time with a quick analysis. In addition, precise analysis may be performed even at a lower concentration of a sample, such that sensitivity and precision are excellent, various subtypes of vitamin D may be simultaneously detected, a throughput is high, and structural analysis and quantitative analysis of vitamin D that has undergone a metabolic process in blood may be accurately performed without a matrix interference.
摘要:
There are provided a bio-chip for secondary ion mass spectrometry and a method of fabricating the same, the bio-chip, which is a bio-chip for analyzing a biochemical material using the secondary ion mass spectrometry, including: a substrate; and core-shell particles positioned above substrate, wherein the core-shell particles each include a metal nanoparticle as a core and a metal shell surrounding the metal nanoparticle.
摘要:
Provided is a method of preparing Raman-active nanoparticles, which includes a) preparing a metal nanocore having a nano-star shape from a first reaction solution in which a first metal precursor is mixed with a buffer solution; b) fixing a Raman reporter in the metal nanocore; and c) forming a metal shell, which surrounds the nanocore in which the Raman reporter is fixed, from a second reaction solution in which a second metal precursor is mixed with the nanocore in which the Raman reporter is fixed. The Raman reporter has a binding affinity for each of a first metal of the metal nanocore and a second metal of the metal shell.
摘要:
Provided is a nanoparticle-vitreous body-based protein complex, and more particularly, to a composition for inhibiting angiogenesis which includes the complex as an active ingredient, and a composition for preventing or treating an angiogenesis-related disease or a retinal disease. When the nanoparticle-vitreous body-based protein complex according to the subject matter is locally injected into the vitreous body, the complex exhibits significantly excellent binding strength with a vascular endothelial growth factor and thus can inhibit angiogenesis, thus being easily used to prepare a therapeutic agent for preventing, alleviating, or treating retinal and choroidal angiogenesis-related diseases.
摘要:
Provided is a Raman-active nanoparticle including: a spherical plasmonic metal core; a plasmonic metal shell having surface irregularities; and a self-assembled monolayer which binds to each of the core and the shell, is positioned between the core and the shell, and includes a Raman reporter satisfying the following Chemical Formula 1: NO2—Ar—SH (Chemical Formula 1) wherein Ar is a (C6-C12) arylene group.
摘要:
Provided is a method of preparing composite nanoparticles, which includes: a) preparing a metal nanocore having a nano-star shape from a first reaction solution in which a first metal precursor is mixed with a first buffer solution; b) fixing a Raman reporter in the metal nanocore; and c) forming a metal shell, which surrounds the nanocore in which the Raman reporter is fixed, from a second reaction solution in which the nanocore in which the Raman reporter is fixed, and a second metal precursor are mixed with a second buffer solution.
摘要:
Provided is a method of monitoring a heart rate of an open circulatory system aquatic organism including water fleas, zebrafish, brine shrimp, and the method of evaluating individual response by real time measurement of a heart rate of an aquatic organism and the individual response evaluation apparatus by real time measurement of a heart rate of an aquatic organism according to the present invention may effectively fix the aquatic organism for real time measurement of the heart rate of an aquatic organism, and may measure the heart rate using digital holography to display the heart rate while configuring a data format to allow the corresponding data to be stored for a long time, thereby treating a compound for inducing an individual response, securing a heart rate change in real time by image processing, and then effectively determining the presence or absence of harmfulness due to induction of the individual response.
摘要:
A method for detecting organic matter in the blood by using LDI-MS, and a device therefor, according to the present invention, are not complicated when performing measurement and do not require the passage of many steps, and facilitate, in real time, measurement and result collection through rapid analysis. In addition, the present invention enables precise analysis even at a lower sample concentration so as to have excellent sensitivity and accuracy, enables the detection of various types of organic matter at the same time and has high throughput, and enables the structure analysis of organic matter, having undergone metabolic processes in the blood, and quantitative analysis thereof to be accurately performed without interference from a matrix.
摘要:
The present invention relates to a method for high-sensitivity and high-specificity detection of biomolecules by using mass spectrometry and, more specifically, to a method for high-sensitivity and high-specificity detection of proteins such as miRNA or antigens by using time-of-flight secondary ion mass spectrometry (ToF-SIMS), matrix-assisted laser desorption/ionization (MALDI), or laser desorption/ionization (LDI) mass spectrometry. The method for high-sensitivity and high-specificity detection of biomolecules by using mass spectrometry, according to the present invention, enables high-sensitivity and high-specificity detection of biomolecules by using surface mass spectrometry, and the method is expected to be used for the diagnosis and prediction of diseases by quantifying, from a biosample, a target probe such as miRNA which is known as a disease marker.
摘要:
Provided is a nanoplasmonic sensor and a kit for biomolecule analysis, and a method of analyzing a biomolecule using the same. The method includes: providing the nanoplasmonic sensor including a dielectric grating extending in one direction, and a metal structure disposed to cover an upper surface and a side surface of the dielectric grating and have at least one bent portion; immobilizing a first probe molecule on a surface of the metal structure; hybridizing an analyte with the first probe molecule by introducing the analyte having a base sequence complementary to the first probe molecule; binding a second probe molecule that is hybridized with the first probe molecule to the analyte; binding an enzyme to the second probe molecule; introducing a substrate that reacts with the enzyme to produce a precipitate by an enzymatic reaction; and measuring localized surface plasmon resonance in the metal structure.