Abstract:
In an additive for an epoxy adhesive and an epoxy adhesive composition for construction including same, the additive for an epoxy adhesive is formed by atomic transfer radical polymerization (ATRP) of a polyacrylate of which one terminal is halogenated, as an arm-polymer, and a diacrylate-based compound or a dimethacrylate-based compound, as a cross-linker, and comprises a star polymer of a star-shape having a core/shell structure including a core formed by the polymerization of the cross-linker and a shell formed by a portion of the arm-polymer.
Abstract:
The present invention relates to thermally and chemically stable quantum dots encapsulated with functional polymeric ligands, a thermally stable quantum dot optical film using the encapsulated quantum dots, and a method for preparing the encapsulated quantum dots. The coating of the surface of the quantum dots with the polymer stabilizes the quantum dots and improves the durability and dispersibility of the quantum dot optical film, achieving markedly improved efficiency of photoluminescent quantum dot devices. Therefore, it is anticipated that the present invention will pave the way for practical use of quantum dots in a variety of light-emitting applications, particularly in high power light-emitting sources, to find commercial application in various fields, including displays, bioimaging, lightings, and photovoltaic cells.
Abstract:
A block copolymer is provided. The block copolymer according to an exemplary embodiment includes a first block represented by Chemical Formula 1 and a second block represented by Chemical Formula 2: wherein COM1 and COM2 are independently selected from a polystyrene moiety, polymethylmethacrylate moiety, polyethylene oxide moiety, polyvinylpyridine moiety, polydimethylsiloxane moiety, polyferrocenyldimethylsilane moiety, and polyisoprene moiety, R1 is hydrogen or an alkyl group with 1 to 10 carbon atoms, Ph is a phenyl group, a is 1 to 50, R2 is hydrogen or an alkyl group with 1 to 10 carbon atoms, and b is 1 to 50.
Abstract:
A block copolymer is provided. The block copolymer according to an exemplary embodiment includes a first block represented by Chemical Formula 1 and a second block represented by Chemical Formula 2: wherein COM1 and COM2 are independently selected from a polystyrene moiety, polymethylmethacrylate moiety, polyethylene oxide moiety, polyvinylpyridine moiety, polydimethylsiloxane moiety, polyferrocenyldimethylsilane moiety, and polyisoprene moiety, R1 is hydrogen or an alkyl group with 1 to 10 carbon atoms, Ph is a phenyl group, a is 1 to 50, R2 is hydrogen or an alkyl group with 1 to 10 carbon atoms, and b is 1 to 50.
Abstract:
An approach is provided for manufacturing a nanostructure. A first thin film including a first block copolymer is formed on a substrate. A guide pattern is formed on the first thin film. A second thin film including a second block copolymer is formed between portions of the guide pattern. The second thin film is cured. The first block copolymer is a cylinder-type and the second block copolymer is a lamella-type.
Abstract:
An approach is provided for manufacturing a nanostructure. A first thin film including a first block copolymer is formed on a substrate. A guide pattern is formed on the first thin film. A second thin film including a second block copolymer is formed between portions of the guide pattern. The second thin film is cured. The first block copolymer is a cylinder-type and the second block copolymer is a lamella-type.