摘要:
The invention notifies a robot controller of the need to re-create map data. A robot control system (1) includes a robot (2) that moves along a path while detecting obstacles, and a robot control terminal (3) that records map data (321) and specifies the path of said robot (2), whereby said robot (2) uses lasers to make measurements while in motion and sends the results as sensor data (324) to said robot control terminal (3) which uses said sensor data to generate simulated sensor data (325) along the future path of said robot, and if the proportion of sections for which simulated sensor data and said map data (321) do not coincide exceeds a threshold value, the user is notified of a reconstruction of said map data (321).
摘要:
An environment map generating apparatus is provided. The environment map generating apparatus includes: a storage unit, a cross-sectional image generating unit, a model processing unit, an obtaining unit and an environment map generating unit. The storage unit stores a model of an obstacle. The cross-sectional image generating unit generates a cross-sectional image of a model of an obstacle at a predetermined height from a reference plane in an environment. The model processing unit generates a cross-sectional image-appended model by superimposing the cross-sectional image onto the model of the obstacle. The obtaining unit obtains an obstacle map at the predetermined height from the reference plane in the environment. The environment map generating unit generates an environment map where the cross-sectional image-appended model is superimposed in a semitransparent state onto the corresponding obstacle in the obstacle map.
摘要:
A computer in a transport system includes: a shooting part for shooting a first calibration tray by controlling a camera; a tray position computing part for computing a tray position of the first calibration tray within a captured image which the shooting part shot; a hand position acquisition part for acquiring a hand position indicative of a position of the hand robot of when the hand robot installs onto the first calibration tray a first transported article used for calibration; a calibration part for computing a calibration data based on the tray position and the hand position; and a transported article installing part which, when the mobile robot reached a predetermined arrival area, controls, based on the calibration data, the hand robot so as to install a second transported article onto a second tray, the second tray which the mobile robot being provided with.
摘要:
Provided is an image input device which includes a laser range finder and a camera, and is capable of automatically calibrating the laser range finder and the camera at an appropriate timing without using special equipment. The image input device includes the laser range finder which measures distance information of an object by using invisible light and the camera which measures color information of the object. In order to detect a calibration error between the laser range finder and the camera, an invisible light filter which blocks visible light and transmits invisible light is automatically attached to a lens of the camera by a switching operation between two kinds of lenses. By the camera to which the invisible light filter is being attached, a pattern of the invisible light projected onto the object from the laser range finder is photographed as a visible image. By the comparison between the thus obtained invisible light pattern image and a reference image, the calibration error between the laser range finder and the camera is calculated. When the calibration error exceeds a predetermined value, a relative position and a relative posture between the laser range finder and the camera are automatically calibrated by control of a platform or the like.
摘要:
A computer in a transport system includes: a shooting part for shooting a first calibration tray by controlling a camera; a tray position computing part for computing a tray position of the first calibration tray within a captured image which the shooting part shot; a hand position acquisition part for acquiring a hand position indicative of a position of the hand robot of when the hand robot installs onto the first calibration tray a first transported article used for calibration; a calibration part for computing a calibration data based on the tray position and the hand position; and a transported article installing part which, when the mobile robot reached a predetermined arrival area, controls, based on the calibration data, the hand robot so as to install a second transported article onto a second tray, the second tray which the mobile robot being provided with.
摘要:
The system includes a mobile apparatus that moves after receiving an input of a path. The system has a path-setting unit for setting the path of a mobile apparatus according to the inputted path, a measuring unit for measuring an environment in which the mobile apparatus exists, an extracting unit for extracting an object existence region in the environment according to the values measured by the measuring unit, a judging unit that judges the validity of the path according to (1) the path set by the path setting unit and (2) the object existence region extracted by the extracting unit, a position determining unit that determines a target position to which the mobile apparatus is to move by selecting it from the portions of the path judged as valid, and a movement controller for controlling the mobile apparatus to move to the target position.
摘要:
An information collection system is provided, which can automatically calculate an operation or a travel path of a tag reader for collecting information of an RF tag. The information collection system of the present invention moves, in a movable area of a two-dimensional map, the tag reader along a surface of an object by referring to a three-dimensional map to emit radio waves while moving an information collection robot, records, upon reception of tag ID from the RF tag, a position of the information collection robot at the time as a data acquisition position, and calculates a path passing through data acquisition positions of all the recorded data as a moving sequence in a movable area of the information collection robot.
摘要:
In a robot system constructed by a superior controller and a robot, it is necessary to carry out a high-speed computation in a system which simultaneously generate a map together with identifying a posture of the robot, there is a problem that the robot system becomes expensive because a computing load becomes enlarged, and it is an object to reduce the computing load. In order to achieve the object, there is provided a robot system constructed by a controller having a map data and a mobile robot, in which the robot is provided with a distance sensor measuring a plurality of distances with respect to a peripheral object, and an identifying apparatus identifying a position and an angle of the robot by collating with the map data, and the controller is provided with a map generating apparatus generating or updating the map data on the basis of the position and the angle of the robot, and the measured distance with respect to the object. Accordingly, it is possible to reduce the computing load of the controller and the robot, and it is possible to achieve a comparatively inexpensive robot system.
摘要:
In the monitoring system that used fixed camera and movement camera, the technique is provided in which facilitates the route making and the movement control of the mobile robot in the remote place. The mobile image-taking device and a monitoring device are connected to each other via a communication network. The monitoring device stores map on the place to be monitored, and outputs the map to a display. Moreover, the monitoring system receives the taking image from a fixed camera, and outputs the image to a display. If abnormality is detected from the taking image of a fixed camera, the movement camera is moved to the abnormality occurrence position. The monitoring device transmits a route of the mobile monitoring device, which is inputted from an input device, to the mobile monitoring device. The mobile monitoring device moves in the place to be monitored according to the received route. The mobile monitoring device takes an image with a camera according to an instruction from the monitoring device, and transmits the taken image to the monitoring device.
摘要:
A technology is provided that easily acquires the location where an article is placed and then moves to that location, even in cases where the article was originally placed in a location shielded from GPS radio wave, and subsequently moved to another location. Marks and RFID tags are affixed to a movable tray. A transfer robot includes a camera, a reader, and a sensor. The transfer robot detects the tray location from the location of a region in an image photographed by the camera that matches mark information. Furthermore, the reader in the transfer robot detects the tray location from the intensity of a radio wave whose information, when read, matches an ID retained in the RFID tag. The transfer robot moves with the camera and the reader, detecting the tray that is the target destination.