摘要:
A metal-containing particle aggregate of an embodiment of the present invention includes a plurality of core-shell particles. Each of the core-shell particles includes: a core portion that contains at least one magnetic metal element selected from the first group consisting of Fe, Co, and Ni, and at least one metal element selected from the second group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare-earth elements, Ba, and Sr; and a shell layer that includes a carbon-containing material layer and an oxide layer that covers at least part of the core portion and includes at least one metal element that belongs to the second group and is contained in the core portion.
摘要:
The present invention provides a small antenna device realizing both miniaturization including lower profile and a broader band in a frequency band of hundreds MHz to 5 GHz and which can be mounted on a small device such as a cellular phone. An antenna device includes: a finite ground plane; a rectangular conductor plate provided above the finite ground plane, whose one side is connected to the finite ground plane, and having a bent portion substantially parallel with the one side; an antenna disposed substantially parallel with the finite ground plane above the finite ground plane, extending in a direction substantially perpendicular to the one side, and having a feeding point positioned near the other side facing the one side of the rectangular conductor plate; and a magnetic material provided in at least a part of space between the finite ground plane and the antenna.
摘要:
The present invention provides a core-shell magnetic material having an excellent characteristic in a high frequency band, particularly, in a GHz band. The core-shell magnetic material includes: core-shell magnetic particles including magnetic metal particles and an oxide coating layer, the magnetic metal particle containing magnetic metal selected from the group of Fe, Co, and Ni, nonmagnetic metal selected from the group of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, a rare-earth element, Ba, and Sr, and an element selected from carbon and nitrogen, and the oxide coating layer being made of an oxide containing at least one nonmagnetic metal as one of the components of the magnetic metal particle; and oxide particles existing at least a part between the magnetic metal particles and containing nonmagnetic metal selected from the group of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, a rare-earth element, Ba, and Sr, and in which nonmagnetic metal/magnetic metal (atomic ratio) in the particles is higher than that in the oxide coating layer.
摘要:
The present invention provides a small antenna device realizing both miniaturization including lower profile and a broader band in a frequency band of hundreds MHz to 5 GHz and which can be mounted on a small device such as a cellular phone. An antenna device includes: a finite ground plane; a rectangular conductor plate provided above the finite ground plane, whose one side is connected to the finite ground plane, and having a bent portion substantially parallel with the one side; an antenna disposed substantially parallel with the finite ground plane above the finite ground plane, extending in a direction substantially perpendicular to the one side, and having a feeding point positioned near the other side facing the one side of the rectangular conductor plate; and a magnetic material provided in at least a part of space between the finite ground plane and the antenna.
摘要:
A high-impedance substrate is provided, which includes a metallic plate employed as a ground plane, a resonance circuit layer spaced away from the metallic plate by a distance “t”, the resonance circuit layer being provided with at least two resonance circuits having the same height and disposed side by side with a distance “g”, a connecting component connecting the resonance circuit with the metallic plate, and a magnetic material layer interposed between the metallic plate and the resonance circuit layer. The distance “t” between the metallic plate and the resonance circuit layer is confined within the range of 0.1 to 10 mm, the distance “g” between neighboring resonance circuits is confined within the range of 0.01 to 5 mm, the distance “h” between the magnetic material layer and the resonance circuit layer is confined within the range represented by the following inequality 1: g/2≦h≦t/2 inequality 1.
摘要翻译:提供了一种高阻抗衬底,其包括用作接地面的金属板,与金属板隔开距离“t”的谐振电路层,谐振电路层设置有至少两个具有 并列配置有距离“g”,将谐振电路与金属板连接起来的连接部件以及介于金属板和谐振电路层之间的磁性体层。 金属板和谐振电路层之间的距离“t”限制在0.1至10mm的范围内,相邻谐振电路之间的距离“g”限制在0.01至5mm的范围内,距离“h” 在磁性材料层和谐振电路层之间限制在由以下不等式1表示的范围内:g / 2≦̸ h≦̸ t / 2不等式1。
摘要:
An insulating magnetic metal particle includes a magnetic metal particle containing at least one metal selected from the group consisting of Co, Fe, and Ni and having a diameter of 5 to 500 nm, a first inorganic insulating layer made of an oxide that covers the surface of the magnetic metal particle, and a second inorganic insulating layer made of an oxide that produces a eutectic crystal by reacting together with the first inorganic insulating layer at the time of heating them, the second inorganic insulating layer being coated on the first inorganic insulating layer. A thickness ratio of the second inorganic insulating layer with respect to the first inorganic insulating layer is set so that the first inorganic insulating layer remains on the surface of the magnetic metal particle after producing the eutectic crystal.
摘要:
An insulating magnetic metal particle includes a magnetic metal particle containing at least one metal selected from the group consisting of Co, Fe, and Ni and having a diameter of 5 to 500 nm, a first inorganic insulating layer made of an oxide that covers the surface of the magnetic metal particle, and a second inorganic insulating layer made of an oxide that produces a eutectic crystal by reacting together with the first inorganic insulating layer at the time of heating them, the second inorganic insulating layer being coated on the first inorganic insulating layer. A thickness ratio of the second inorganic insulating layer with respect to the first inorganic insulating layer is set so that the first inorganic insulating layer remains on the surface of the magnetic metal particle after producing the eutectic crystal.
摘要:
A metal-containing particle aggregate of an embodiment of the present invention includes a plurality of core-shell particles. Each of the core-shell particles includes: a core portion that contains at least one magnetic metal element selected from the first group consisting of Fe, Co, and Ni, and at least one metal element selected from the second group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare-earth elements, Ba, and Sr; and a shell layer that includes a carbon-containing material layer and an oxide layer that covers at least part of the core portion and includes at least one metal element that belongs to the second group and is contained in the core portion.
摘要:
The present invention provides a core-shell magnetic material having an excellent characteristic in a high frequency band, particularly, in a GHz band. The core-shell magnetic material includes: core-shell magnetic particles including magnetic metal particles and an oxide coating layer, the magnetic metal particle containing magnetic metal selected from the group of Fe, Co, and Ni, nonmagnetic metal selected from the group of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, a rare-earth element, Ba, and Sr, and an element selected from carbon and nitrogen, and the oxide coating layer being made of an oxide containing at least one nonmagnetic metal as one of the components of the magnetic metal particle; and oxide particles existing at least a part between the magnetic metal particles and containing nonmagnetic metal selected from the group of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, a rare-earth element, Ba, and Sr, and in which nonmagnetic metal/magnetic metal (atomic ratio) in the particles is higher than that in the oxide coating layer.
摘要:
A metal-containing particle aggregate of an embodiment of the present invention includes a plurality of core-shell particles. Each of the core-shell particles includes: a core portion that contains at least one magnetic metal element selected from the first group consisting of Fe, Co, and Ni, and at least one metal element selected from the second group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare-earth elements, Ba, and Sr; and a shell layer that includes a carbon-containing material layer and an oxide layer that covers at least part of the core portion and includes at least one metal element that belongs to the second group and is contained in the core portion.