Abstract:
A magnetic member is interposed and arranged between an antenna element and a printed circuit board, and an air member or a dielectric member is interposed between the antenna element and the magnetic member. The magnetic member is constituted of a nanogranular structure in which magnetic nanoparticles with ferromagnetism are three-dimensionally dispersed and arranged in an insulating matrix substrate.
Abstract:
An antenna element made of an electrically conductive material pattern is printed and formed on a face of a casing made of an electrically nonconductive material having a circuit board housed therein, and the antenna element and the circuit board are electrically connected to each other by a connecting element.
Abstract:
A wireless communication device includes: a case that includes a dielectric member made of a first dielectric material, the dielectric member being coated with a coating layer made of a second dielectric material; a wireless communication circuit that is housed in the case; an antenna element that is electrically connected to the wireless communication circuit, the antenna element being made of a conductive material and provided on a surface of the dielectric member; and an adhesive layer that is disposed between the antenna element and the dielectric member to adhere the antenna element onto the dielectric member, the adhesive layer being made of a third dielectric material.
Abstract:
An electronic device includes a first molded body having a first frame, the first molded body being provided with a conductive pattern on its outer surface, a second molded body having a second frame, the second molded body being joined to the first molded body, a wiring sheet made of an insulative sheet provided with an interconnection pattern, a circuit board having a feed point, and a feed line having a first end extended to a mating surface of the first frame opposed to the second frame and a second end connected to the conductive pattern. The interconnection pattern has a first end connected to the one end of the feed line. The interconnection pattern has a second end connected to the feed point.
Abstract:
A radio apparatus configured to perform contactless communication with an external device having a first antenna, upon being arranged opposite the external device, is provided. The radio apparatus includes a case, a second antenna and a conductive element. The case has an outer face arranged opposite the external device upon the radio apparatus being arranged opposite the external device. The second antenna is provided in the case, and at least partially arranged parallel to the outer face. The conductive element is arranged close to and electrically coupled with the first antenna, upon the case being positioned opposite the external device so that the contactless communication may be performed.
Abstract:
A magnetic member is interposed and arranged between an antenna element and a printed circuit board, and an air member or a dielectric member is interposed between the antenna element and the magnetic member. The magnetic member is constituted of a nanogranular structure in which magnetic nanoparticles with ferromagnetism are three-dimensionally dispersed and arranged in an insulating matrix substrate.
Abstract:
An electronic apparatus includes: a housing provided with a first conductive pattern; a substrate provided with a first wiring layer in a surface thereof and fixed to the housing; and a first conductive member connecting the first conductive pattern and the first wiring layer. The first conductive pattern extends onto an outer surface and an inner surface of the housing. The first conductive member is in contact with each of at least a part of the first conductive pattern extending onto the inner surface and an end of the first wiring layer. Alternatively, an electronic apparatus includes: a housing provided with a conductive pattern and having a through part in a frame portion thereof; and a substrate provided with a wiring layer on a surface thereof and having a protruding part and fixed to the housing. The protruding part and the through part are fit. The conductive pattern extends onto an outer surface of the housing and onto an inner surface of the through part. At least some of the conductive pattern extending onto the inner surface is in contact with an end of the wiring layer.
Abstract:
A magnetic member is interposed and arranged between an antenna element and a printed circuit board, and an air member or a dielectric member is interposed between the antenna element and the magnetic member. The magnetic member is constituted of a nanogranular structure in which magnetic nanoparticles with ferromagnetism are three-dimensionally dispersed and arranged in an insulating matrix substrate.
Abstract:
The present invention provides a core-shell magnetic material having an excellent characteristic in a high frequency band, particularly, in a GHz band. The core-shell magnetic material includes: core-shell magnetic particles including magnetic metal particles and an oxide coating layer, the magnetic metal particle containing magnetic metal selected from the group of Fe, Co, and Ni, nonmagnetic metal selected from the group of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, a rare-earth element, Ba, and Sr, and an element selected from carbon and nitrogen, and the oxide coating layer being made of an oxide containing at least one nonmagnetic metal as one of the components of the magnetic metal particle; and oxide particles existing at least a part between the magnetic metal particles and containing nonmagnetic metal selected from the group of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, a rare-earth element, Ba, and Sr, and in which nonmagnetic metal/magnetic metal (atomic ratio) in the particles is higher than that in the oxide coating layer.
Abstract:
A wireless communication device includes: a case made of a first dielectric material; a cover made of a second dielectric material which covers an outer surface of the case; a wireless communication circuit which is housed in the case; an antenna element made of a conductive material and provided on the outer surface of the case between the case and the cover, the antenna element being electrically connected to the wireless communication circuit by a connection member that penetrates the case; and an adhesive layer which is disposed between the antenna element and the case to adhere the antenna element onto the case, the adhesive layer being made of a third dielectric material.