摘要:
In a conventional electrodeless discharge lamp, a large amount of magnetic field leaks from at light-transparent envelope, and the efficiency of conversion from electric power to light energy is low. In a electrodeless discharge lamp in which light-emitting gases in a light-transparent envelope are excited with a magnetic field generated from a coil, end portions of a magnetic material included in the coil are substantially axially disposed in the light-transparent envelope. As a result, the magnetic flux which leaks outside the light-transparent envelope is decreased so the density of the magnetic flux in the envelope is increased and the efficiency of the lamp is improved.
摘要:
An electrodeless compact fluorescent lamp operated at a frequency from 50 KHz to 1000 KHz and RF power from 10 W to 40 W is described. The lamp includes a bulbous glass envelope (1) filled with rare gas and metal vapor, reentrant glass cavity (2), an induction coil (6) made from Litz wire, a ferrite assembly comprising a ferrite core (7) and MnZn ferrite disk (11), a cooling structure comprising a metal (or ceramic) tube (8) positioned inside the ferrite core (7) and a metal (or ceramic) unit (9) that transmits the heat from the cavity and ferrite assembly to the Edison socket (10), a thermal shield (12), and a driver and matching network located inside the lamp base (13). A protective coating (15) and phosphor coating (16) are coated on the inner surface of the envelope (1) and reentrant cavity (2). The reflective coating (17) made from alumina is coated on the inner surface of the cavity (2) and on the outer surface of the envelope bottom (4). The mercury pressure is controlled in the envelope by the temperature of the amalgam (5) positioned in the tubulation (3) or by the temperature of pure mercury located in the cold spot.
摘要:
An electrodeless lamp includes a bulbous lamp envelope enclosing an inert gas and a vaporizable metal fill, the lamp envelope having a reentrant cavity and an envelope bottom, an electromagnetic coupler positioned within the reentrant cavity, and a thermal shield positioned in proximity to the envelope bottom and configured to increase the temperature of the envelope bottom. By increasing the temperature of the envelope bottom, a cold spot is prevented. As a result, light output at low temperatures is comparable to light output at room temperature.
摘要:
An electrodeless fluorescent lamp employs a glass envelope made from a single linear tube or bulb and a reentry cavity disposed on the envelope axis and sealed to the envelope. The envelope is filled with inert gas and mercury vapor. Phosphor and protective coatings are disposed on the inner surfaces of the envelope and the cavity. An induction coil of A few turns made from silver coated copper wire is wrapped around the envelope in its axial direction. The inductively-coupled axially uniform plasma is generated inside the envelope. The discharge electric field and current form a closed-loop path inside the envelope along its walls. The introduction of the reentry cavity decreases the lamp wall loading without loosing lamp power efficiency and efficacy. The lamp is operated at frequencies from 50 kHz to 200 MHz and RF power from 5 W to 2000 W without the use of ferrite inside of the reentry cavity.
摘要:
An electrodeless lamp includes an envelope (1) containing a fill of discharge gas, a magnetic core t(7), an induction coil (6) wound around the magnetic core (7), a driver circuit for supplying an electric current to the induction coil (6) to operate the electrodeless lamp, a socket (10) for receiving electrical power supplied to the electrodeless lamp, and a heat conduction means (8,9) thermally coupled to the magnetic core (7) for conducting heat generated in the magnetic core (7) to the ambient atmosphere to dissipate heat therein, or coupled to the socket (10) for conducting heat generated in the magnetic core (7) to the socket to dissipate heat therethrough.
摘要:
An electrodeless lamp includes a bulbous lamp envelope enclosing an inert gas and a vaporizable metal fill, the lamp envelope having a reentrant cavity, a magnetic core positioned within the reentrant cavity, an induction coil disposed on the magnetic core, a cooling structure disposed inside the magnetic core, and a spacer structure between the magnetic core and an inside wall of the reentrant cavity. The spacer structure defines a thermally insulating gap between the magnetic core and the inside wall of the reentrant cavity to control coil/core temperature.
摘要:
An electrodeless lamp includes a bulbous lamp envelope enclosing an inert gas and a vaporizable metal fill, the lamp envelope having a reentrant cavity; an electromagnetic coupler positioned within the reentrant cavity; and a cold spot structure configured for low temperature, low duty cycle operation and for room temperature, 100% duty cycle operation. In some embodiments, the cold spot structure includes a dimple in the lamp envelope, the dimple having a thinned sidewall. In further embodiments, a shield is positioned near the dimple to control cold spot temperature. In additional embodiments, the cold spot structure includes a heat sink attached to the exhaust tube of the lamp envelope and thermally isolated from the lamp base.
摘要:
The present invention comprises a compact electrodeless fluorescent lamp that includes a transparent envelope containing a fill of inert gas along with a vaporizable metal such as mercury. An induction coil is operated by a driver circuit, and is positioned inside of a reentrant cavity in the envelope with an adjacent permeable magnetic field manipulation structure having a shunting surface ending at a shunting surface periphery. A thermally and electrically conductive primary cooling structure is positioned adjacent the magnetic field manipulation structure to extend within the shunting surface periphery while being separated from the induction coil thereby. A further component cooling structure is provided to at least partially enclose the driver circuit connected to the induction coil.
摘要:
An electrodeless low pressure discharge lamp comprises an envelope made from a straight tube and a reentry cavity sealed to one of tube's ends. The cavity has several hollow ferrite cores separated from each other with a few mm distance. Each ferrite core has an induction coil of few turns wound around the core. Each cavity has a cooling copper tube or rod located inside the ferrite core that removes heat from the cores and dumps the heat into a heat sink welded to the cooling tube/rod thereby keep the temperature of the ferrite cores below their Curie point. Each induction coil is electrically connected to the matching network while all matching networks are connected in parallel to the high frequency power source (driver). Inductively coupled plasmas generated in the envelope by several core/coil assemblies produce axially uniform UV and visible radiation.
摘要:
An electrodeless fluorescent lamp employs a glass envelope made from a single linear tube filled with inert gas and mercury vapor. Phosphor and protective coatings are disposed on the inner surface of the envelope walls. An induction coil of few turns made from silver coated copper or Litz wire is wrapped around the linear tube in its axial direction. The inductively-coupled axially uniform plasma is generated inside the linear tube. The discharge electric field and current form a closed-loop path inside a tube in its axial direction. The lamp is operated at frequencies from 100 KHz to 100 MHz and RF power from 10 W to 2000 W (dependent on lamp size and number of turns). The lamp power efficiency and efficacy are comparable to those in electrodeless lamps of closed-loop shape operated with and without ferrite core.