摘要:
An electrodeless fluorescent lamp employs a glass envelope made from a single linear tube or bulb and a reentry cavity disposed on the envelope axis and sealed to the envelope. The envelope is filled with inert gas and mercury vapor. Phosphor and protective coatings are disposed on the inner surfaces of the envelope and the cavity. An induction coil of A few turns made from silver coated copper wire is wrapped around the envelope in its axial direction. The inductively-coupled axially uniform plasma is generated inside the envelope. The discharge electric field and current form a closed-loop path inside the envelope along its walls. The introduction of the reentry cavity decreases the lamp wall loading without loosing lamp power efficiency and efficacy. The lamp is operated at frequencies from 50 kHz to 200 MHz and RF power from 5 W to 2000 W without the use of ferrite inside of the reentry cavity.
摘要:
An electrodeless compact fluorescent lamp operated at a frequency from 50 KHz to 1000 KHz and RF power from 10 W to 40 W is described. The lamp includes a bulbous glass envelope (1) filled with rare gas and metal vapor, reentrant glass cavity (2), an induction coil (6) made from Litz wire, a ferrite assembly comprising a ferrite core (7) and MnZn ferrite disk (11), a cooling structure comprising a metal (or ceramic) tube (8) positioned inside the ferrite core (7) and a metal (or ceramic) unit (9) that transmits the heat from the cavity and ferrite assembly to the Edison socket (10), a thermal shield (12), and a driver and matching network located inside the lamp base (13). A protective coating (15) and phosphor coating (16) are coated on the inner surface of the envelope (1) and reentrant cavity (2). The reflective coating (17) made from alumina is coated on the inner surface of the cavity (2) and on the outer surface of the envelope bottom (4). The mercury pressure is controlled in the envelope by the temperature of the amalgam (5) positioned in the tubulation (3) or by the temperature of pure mercury located in the cold spot.
摘要:
An electrodeless lamp includes a bulbous lamp envelope enclosing an inert gas and a vaporizable metal fill, the lamp envelope having a reentrant cavity, a magnetic core positioned within the reentrant cavity, an induction coil disposed on the magnetic core, a cooling structure disposed inside the magnetic core, and a spacer structure between the magnetic core and an inside wall of the reentrant cavity. The spacer structure defines a thermally insulating gap between the magnetic core and the inside wall of the reentrant cavity to control coil/core temperature.
摘要:
In a conventional electrodeless discharge lamp, a large amount of magnetic field leaks from at light-transparent envelope, and the efficiency of conversion from electric power to light energy is low. In a electrodeless discharge lamp in which light-emitting gases in a light-transparent envelope are excited with a magnetic field generated from a coil, end portions of a magnetic material included in the coil are substantially axially disposed in the light-transparent envelope. As a result, the magnetic flux which leaks outside the light-transparent envelope is decreased so the density of the magnetic flux in the envelope is increased and the efficiency of the lamp is improved.
摘要:
An electrodeless lamp includes a bulbous lamp envelope enclosing an inert gas and a vaporizable metal fill, the lamp envelope having a reentrant cavity and an envelope bottom, an electromagnetic coupler positioned within the reentrant cavity, and a thermal shield positioned in proximity to the envelope bottom and configured to increase the temperature of the envelope bottom. By increasing the temperature of the envelope bottom, a cold spot is prevented. As a result, light output at low temperatures is comparable to light output at room temperature.
摘要:
An electrodeless lamp includes an envelope (1) containing a fill of discharge gas, a magnetic core t(7), an induction coil (6) wound around the magnetic core (7), a driver circuit for supplying an electric current to the induction coil (6) to operate the electrodeless lamp, a socket (10) for receiving electrical power supplied to the electrodeless lamp, and a heat conduction means (8,9) thermally coupled to the magnetic core (7) for conducting heat generated in the magnetic core (7) to the ambient atmosphere to dissipate heat therein, or coupled to the socket (10) for conducting heat generated in the magnetic core (7) to the socket to dissipate heat therethrough.
摘要:
An electrodeless fluorescent lamp containing a fill of a rare gas and mercury and a flag (14) disposed therein at a predetermined location in the lamp for increasing the rate of luminous development in the lamp. The flag (14) includes a pair of spaced-apart metallic foil sections (31) and a metallic mesh substrate (30) disposed between the foil sections (31) whereby to be shielded from ion bombardment of the discharge. A coating (30a) of indium which is adapted to amalgamate with the mercury is disposed on the mesh (30). The sections are joined together by spot-welding (32) to enable migration of mercury into and out of the space between the sections thereby enable the atoms to form an amalgam with the indium and be rapidly released therefrom.
摘要:
An electrodeless inductively-coupled fluorescent lamp which operates at radio frequencies and contains an induction coil (1) which is inserted in a reentrant cavity (2) of the envelope (7) and is spread along the length of the reentrant cavity (2). The coil (1) is disposed within a cylinder (14) of thermally conductive metal. The use of the spread coil provides for reduction of starting and operation voltages of the lamp and results in lowering of the energy of ions bombarding the inner surface of the envelope (7) and the cavity (2) and therefore improves lamp maintenance and increases lamp life.
摘要:
An electrodeless inductively-coupled fluorescent lamp which operates at ro frequency comprising a bulbous envelope (1) filled with rare gas and metal vapor. A reentrant cavity (4) and an induction coil (6) are disposed in the cavity (4). The inner walls of the envelope (1) and the cavity (4) have a protective coating (3) and a phosphor coating (2). A metal Faraday cylinder (12) welded to the lamp base (13) is disposed between the cavity (4) and the coil (6) to reduce capacitive RF voltage between the coil and the plasma to improve lamp maintenance and remove heat. A tubulation (16) is disposed on the lamp axis to evacuate the envelope (1). The proximal end of the tubulation (16) has an expansion (20) with the volume (23) where the initial capacitive discharge is ignited. The RF coil voltage needed for the ignition of the capacitive discharge in the expansion area (23) is substantially lower than that needed for the ignition of the capacitive discharge in the area (14) along the inner cavity walls (4) to decrease the lamp starting voltage. In one of the embodiments of the present invention the expansion is conically shaped and in another it is cylindrically shaped and is used to generate the inductive plasma to increase the light generation in the top part of the bulb (28) and improve light output through the bulb top surface (27).
摘要:
Electrodeless, low pressure, fluorescent discharge lamp of high aspect ratio, with a substantially flat spiral rf coil adjacent a back face (and insulated therefrom), that emits light through a front surface or selected portions under control of internal reflective and phosphor coatings placement to afford minimum resonance trapping, high efficiency and uniform illumination of high specific intensity over a selected area of the front wall.