摘要:
A hard bias structure for biasing a free layer in a MR element within a magnetic read head is comprised of a soft magnetic underlayer such as NiFe and a hard bias layer comprised of Co78.6Cr5.2Pt16.2 or Co65Cr15Pt20 that are rigidly exchange coupled to ensure a well aligned longitudinal biasing direction with minimal dispersions. The hard bias structure is formed on a BCC seed layer such as CrTi to improve lattice matching. The hard bias structure may be laminated in which each of the underlayers and hard bias layers has a thickness that is adjusted to optimize the total HC, Mrt, and S values. The present invention encompasses CIP and CPP spin values, MTJ devices, and multi-layer sensors. A larger process window for fabricating the hard bias structure is realized and lower asymmetry output and NBLW reject rates during a read operation are achieved.
摘要:
A hard bias structure for biasing a free layer in a MR element within a magnetic read head is comprised of a soft magnetic underlayer such as NiFe and a hard bias layer comprised of Co78.6Cr5.2Pt16.2 or Co65Cr15Pt20 that are rigidly exchange coupled to ensure a well aligned longitudinal biasing direction with minimal dispersions. The hard bias structure is formed on a BCC seed layer such as CrTi to improve lattice matching. The hard bias structure may be laminated in which each of the underlayers and hard bias layers has a thickness that is adjusted to optimize the total HC, Mrt, and S values. The present invention encompasses CIP and CPP spin values, MTJ devices, and multi-layer sensors. A larger process window for fabricating the hard bias structure is realized and lower asymmetry output and NBLW reject rates during a read operation are achieved.
摘要:
A hard bias structure for biasing a free layer in a MR element within a magnetic read head is comprised of a soft magnetic underlayer such as NiFe and a hard bias layer comprised of Co78.6Cr5.2Pt16.2 or Co65Cr15Pt20 that are rigidly exchange coupled to ensure a well aligned longitudinal biasing direction with minimal dispersions. The hard bias structure is formed on a BCC seed layer such as CrTi to improve lattice matching. The hard bias structure may be laminated in which each of the underlayers and hard bias layers has a thickness that is adjusted to optimize the total Hc, Mrt, and S values. The present invention encompasses CIP and CPP spin values, MTJ devices, and multi-layer sensors. A larger process window for fabricating the hard bias structure is realized and lower asymmetry output and NBLW (normalized base line wandering) reject rates during a read operation are achieved.
摘要:
A hard bias structure for biasing a free layer in a MR element within a magnetic read head is comprised of a soft magnetic underlayer such as NiFe and a hard bias layer comprised of Co78.6Cr5.2Pt16.2 or Co65Cr15Pt20 that are rigidly exchange coupled to ensure a well aligned longitudinal biasing direction with minimal dispersions. The hard bias structure is formed on a BCC seed layer such as CrTi to improve lattice matching. The hard bias structure may be laminated in which each of the underlayers and hard bias layers has a thickness that is adjusted to optimize the total HC, Mrt, and S values. The present invention encompasses CIP and CPP spin values, MTJ devices, and multi-layer sensors. A larger process window for fabricating the hard bias structure is realized and lower asymmetry output and NBLW (normalized base line wandering) reject rates during a read operation are achieved.
摘要:
A method of forming a CPP-GMR spin valve having a pinned layer with an AP2/coupling/AP1 configuration is disclosed wherein the AP2 portion is a FCC-like trilayer having a composition represented by CoZFe(100-Z)/Fe(100-X)TaX/CoZFe(100-Z) or CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where x is 3 to 30 atomic %, y is 40 to 100 atomic %, and z is 75 to 100 atomic %. Preferably, z is 90 to provide a face centered cubic structure that minimizes electromigration. Optionally, the middle layer is comprised of an Fe rich alloy such as FeCr, FeV, FeW, FeZr, FeNb, FeHf, or FeMo. EM performance is improved significantly compared to a spin valve with a conventional AP2 Co50Fe50 or Co75Fe25 single layer. MR ratio is also increased and RA is maintained at an acceptable level. The coupling layer is preferably Ru and the AP1 layer may be comprised of a lamination of CoFe and Cu layers as in [CoFe/Cu]2/CoFe.
摘要:
A CPP-GMR spin valve having a pinned layer with an AP2/coupling/AP1 configuration is disclosed wherein the AP2 portion is a FCC-like trilayer having a composition represented by CoZFe(100-Z)/Fe(100-X)TaX/CoZFe(100-Z) or CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where x is 3 to 30 atomic %, y is 40 to 100 atomic %, and z is 75 to 100 atomic %. Preferably, z is 90 to provide a face centered cubic structure that minimizes electromigration. Optionally, the middle layer is comprised of an Fe rich alloy such as FeCr, FeV, FeW, FeZr, FeNb, FeHf, or FeMo. EM performance is improved significantly compared to a spin valve with a conventional AP2 Co50Fe5 or Co75Fe25 single layer. The MR ratio of the spin valve is also increased and the RA is maintained at an acceptable level. The coupling layer is preferably Ru and the AP1 layer may be comprised of a lamination of CoFe and Cu layers as in [CoFe/Cu]2/CoFe.
摘要:
A method of forming a CPP-GMR spin valve having a pinned layer with an AP2/coupling/AP1 configuration is disclosed wherein the AP2 portion is a FCC-like trilayer having a composition represented by CoZFe(100-Z)/Fe(100-X)TaX/CoZFe(100-Z) or CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where x is 3 to 30 atomic %, y is 40 to 100 atomic %, and z is 75 to 100 atomic %. Preferably, z is 90 to provide a face centered cubic structure that minimizes electromigration. Optionally, the middle layer is comprised of an Fe rich alloy such as FeCr, FeV, FeW, FeZr, FeNb, FeHf, or FeMo. EM performance is improved significantly compared to a spin valve with a conventional AP2 Co50Fe50 or Co75Fe25 single layer. MR ratio is also increased and RA is maintained at an acceptable level. The coupling layer is preferably Ru and the AP1 layer may be comprised of a lamination of CoFe and Cu layers as in [CoFe/Cu]2/CoFe.
摘要:
A CPP-GMR spin valve having a pinned layer with an AP2/coupling/AP1 configuration is disclosed wherein the AP2 portion is a FCC-like trilayer having a composition represented by CoZFe(100-Z)/Fe(100-X)TaX/CoZFe(100-Z) or CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where x is 3 to 30 atomic %, y is 40 to 100 atomic %, and z is 75 to 100 atomic %. Preferably, z is 90 to provide a face centered cubic structure that minimizes electromigration. Optionally, the middle layer is comprised of an Fe rich alloy such as FeCr, FeV, FeW, FeZr, FeNb, FeHf, or FeMo. EM performance is improved significantly compared to a spin valve with a conventional AP2 Co50Fe5 or Co75Fe25 single layer. The MR ratio of the spin valve is also increased and the RA is maintained at an acceptable level. The coupling layer is preferably Ru and the AP1 layer may be comprised of a lamination of CoFe and Cu layers as in [CoFe/Cu]2/CoFe.
摘要翻译:公开了一种具有AP2 /耦合/ AP1构型的钉扎层的CPP-GMR自旋阀,其中AP2部分是具有由Co< Z> Fe(100)表示的组成的FCC状三层 -Z)/ Fe(100-X)Ta x / Co Z(Fe)(100-Z) (100-Z)/(C-1)(100-Y)/ (100-Z)其中x为3至30原子%,y为40至100原子%,z为75至100原子%。 优选地,z为90以提供使电迁移最小化的面心立方结构。 任选地,中间层由富Fe合金如FeCr,FeV,FeW,FeZr,FeNb,FeHf或FeMo组成。 与具有常规AP 2 Co 50 Fe 5 O 5或Co 75 Fe 2 O 5的自旋阀相比,EM性能显着提高 >单层。 自旋阀的MR比也增加,RA保持在可接受的水平。 耦合层优选为Ru,并且AP1层可以由如[CoFe / Cu] 2 / CoFe中的CoFe和Cu层的层叠构成。
摘要:
A hard bias structure for biasing a free layer in a MR element within a read head is comprised of a composite hard bias layer having a Co78.6Cr5.2Pt16.2/Co65Cr15Pt20 configuration. The upper Co65Cr15Pt20 layer has a larger Hc value and a thickness about 2 to 10 times greater than that of the Co78.6Cr5.2Pt16.2 layer. The hard bias structure may also include a BCC underlayer such as FeCoMo which enhances the magnetic moment of the hard bias structure. Optionally, the thickness of the Co78.6Cr5.2Pt16.2 layer is zero and the Co65Cr15Pt20 layer is formed on the BCC underlayer. The present invention also encompasses a laminated hard bias structure. The Mrt value for the hard bias structure may be optimized by adjusting the thicknesses of the BCC underlayer and CoCrPt layers. As a result, a larger process window is realized and lower asymmetry output during a read operation is achieved.
摘要:
A hard bias structure for biasing a free layer in a MR element within a read head is comprised of a composite hard bias layer having a Co78.6Cr5.2Pt16.2/Co65Cr15Pt20 configuration. The upper Co65Cr15Pt20 layer has a larger Hc value and a thickness about 2 to 10 times greater than that of the Co78.6Cr5.2Pt16.2 layer. The hard bias structure may also include a BCC underlayer such as FeCoMo which enhances the magnetic moment of the hard bias structure. Optionally, the thickness of the Co78.6Cr5.2Pt16.2 layer is zero and the Co65Cr15Pt20 layer is formed on the BCC underlayer. The present invention also encompasses a laminated hard bias structure. The Mrt value for the hard bias structure may be optimized by adjusting the thicknesses of the BCC underlayer and CoCrPt layers. As a result, a larger process window is realized and lower asymmetry output during a read operation is achieved.