摘要:
A light-emitting gallium nitride-based III-V group compound semiconductor device and a manufacturing method thereof are disclosed. The light emitting device includes a substrate, a n-type semiconductor layer over the substrate, an active layer over the n-type semiconductor layer, a p-type semiconductor layer over the active layer, a conductive layer over the p-type semiconductor layer, a first electrode disposed on the conductive layer and a second electrode arranged on exposed part of the n-type semiconductor layer. A resistant reflective layer or a contact window is disposed on the p-type semiconductor layer, corresponding to the first electrode so that current passes beside the resistant reflective layer or by the contact window to the active layer for generating light. When the light is transmitted to the conductive layer for being emitted, it is not absorbed or shielded by the first electrode. Thus the current is distributed efficiently over the conductive layer. Therefore, both LED brightness and efficiency are improved. Moreover, adhesion between the conductive layer and the p-type semiconductor layer is improved so that metal peel-off problem during manufacturing processes can be improved.
摘要:
A light-emitting gallium nitride-based III-V group compound semiconductor device and a manufacturing method thereof are disclosed. The light emitting device includes a substrate, a n-type semiconductor layer over the substrate, an active layer over the n-type semiconductor layer, a p-type semiconductor layer over the active layer, a conductive layer over the p-type semiconductor layer, a first electrode disposed on the conductive layer and a second electrode arranged on exposed part of the n-type semiconductor layer. A resistant reflective layer or a contact window is disposed on the p-type semiconductor layer, corresponding to the first electrode so that current passes beside the resistant reflective layer or by the contact window to the active layer for generating light. When the light is transmitted to the conductive layer for being emitted, it is not absorbed or shielded by the first electrode. Thus the current is distributed efficiently over the conductive layer. Therefore, both LED brightness and efficiency are improved. Moreover, adhesion between the conductive layer and the p-type semiconductor layer is improved so that metal peel-off problem during manufacturing processes can be improved.
摘要:
A light-emitting gallium nitride-based III-V group compound semiconductor device and a manufacturing method thereof are disclosed. The light emitting device includes a substrate, a n-type semiconductor layer over the substrate, an active layer over the n-type semiconductor layer, a p-type semiconductor layer over the active layer, a conductive layer over the p-type semiconductor layer, a first electrode disposed on the conductive layer and a second electrode arranged on exposed part of the n-type semiconductor layer. A resistant reflective layer or a contact window is disposed on the p-type semiconductor layer, corresponding to the first electrode so that current passes beside the resistant reflective layer or by the contact window to the active layer for generating light. When the light is transmitted to the conductive layer for being emitted, it is not absorbed or shielded by the first electrode. Thus the current is distributed efficiently over the conductive layer. Therefore, both LED brightness and efficiency are improved. Moreover, adhesion between the conductive layer and the p-type semiconductor layer is improved so that metal peel-off problem during manufacturing processes can be improved.
摘要:
A multidirectional light scattering LED and a manufacturing method thereof are disclosed. A metal oxide is irregular disposed over a second semiconductor layer and then is removed by etching. Part of the second semiconductor layer, part of a light-emitting layer or part of the first semiconductor layer is also removed so as to form a scattering layer. A transparent conductive layer is arranged over the second semiconductor layer while further a second electrode is disposed over the transparent conductive layer. A first electrode is installed on the scattering layer. Thus light output from the LED is scattered in multi-directions.
摘要:
A multidirectional light scattering LED and a manufacturing method thereof are disclosed. A metal oxide is irregular disposed over a second semiconductor layer and then is removed by etching. Part of the second semiconductor layer, part of a light-emitting layer or part of the first semiconductor layer is also removed so as to form a scattering layer. A transparent conductive layer is arranged over the second semiconductor layer while further a second electrode is disposed over the transparent conductive layer. A first electrode is installed on the scattering layer. Thus light output from the LED is scattered in multi-directions.
摘要:
A multidirectional light scattering LED and a manufacturing method thereof are disclosed. A metal oxide is irregular disposed over a second semiconductor layer and then is removed by etching. Part of the second semiconductor layer, part of a light-emitting layer or part of the first semiconductor layer is also removed so as to form a scattering layer. A transparent conductive layer is arranged over the second semiconductor layer while further a second electrode is disposed over the transparent conductive layer. A first electrode is installed on the scattering layer. Thus light output from the LED is scattered in multi-directions.
摘要:
A multidirectional light scattering LED and a manufacturing method thereof are disclosed. A metal oxide is irregular disposed over a second semiconductor layer and then is removed by etching. Part of the second semiconductor layer, part of a light-emitting layer or part of the first semiconductor layer is also removed so as to form a scattering layer. A transparent conductive layer is arranged over the second semiconductor layer while further a second electrode is disposed over the transparent conductive layer. A first electrode is installed on the scattering layer. Thus light output from the LED is scattered in multi-directions.
摘要:
A nitride based semiconductor light emitting device is revealed. The light emitting device includes a light emitting epitaxial layer, a P-type electrode and a N-type electrode. The P-type electrode and the N-type electrode are disposed on the light emitting epitaxial layer. The light emitting device features on that the N-type electrode is arranged on the inner side of the P-type electrode. The P-type electrode extends toward the N-type electrode along the edge of the light emitting epitaxial layer and the N-type electrode extends inward along the inner side of the P-type electrode. By means of the electrode pattern with special design, the light emitting area of the light emitting device is increased.
摘要:
The present invention provides a light-emitting device with a reflection layer and the structure of the reflection layer. The reflection layer comprises a variety of dielectric materials. The reflection layer includes a plurality of dielectric layers. The materials of the plurality of dielectric layers have two or more types with two or more thicknesses, except for the combination of two material types and two thicknesses, for forming the reflection layer with a variety of structures. The reflection layer according to the present invention can be applied to light-emitting diodes of various types to form new light-emitting devices. Owing to its excellent reflectivity, the reflection layer can improve light-emitting efficiency of the light-emitting devices.
摘要:
The present invention provides a light-emitting device with a reflection layer and the structure of the reflection layer. The reflection layer comprises a variety of dielectric materials. The reflection layer includes a plurality of dielectric layers. The materials of the plurality of dielectric layers have two or more types with two or more thicknesses, except for the combination of two material types and two thicknesses, for forming the reflection layer with a variety of structures. The reflection layer according to the present invention can be applied to light-emitting diodes of various types to form new light-emitting devices. Owing to its excellent reflectivity, the reflection layer can improve light-emitting efficiency of the light-emitting devices.