摘要:
The present invention provides a light-emitting device with a reflection layer and the structure of the reflection layer. The reflection layer comprises a variety of dielectric materials. The reflection layer includes a plurality of dielectric layers. The materials of the plurality of dielectric layers have two or more types with two or more thicknesses, except for the combination of two material types and two thicknesses, for forming the reflection layer with a variety of structures. The reflection layer according to the present invention can be applied to light-emitting diodes of various types to form new light-emitting devices. Owing to its excellent reflectivity, the reflection layer can improve light-emitting efficiency of the light-emitting devices.
摘要:
A nitride based semiconductor light emitting device is revealed. The light emitting device includes a light emitting epitaxial layer, a P-type electrode and a N-type electrode. The P-type electrode and the N-type electrode are disposed on the light emitting epitaxial layer. The light emitting device features on that the N-type electrode is arranged on the inner side of the P-type electrode. The P-type electrode extends toward the N-type electrode along the edge of the light emitting epitaxial layer and the N-type electrode extends inward along the inner side of the P-type electrode. By means of the electrode pattern with special design, the light emitting area of the light emitting device is increased.
摘要:
The present invention relates to a light-emitting diode (LED). The LED comprises an LED die, one or more metal pads, and a fluorescent layer. The characteristics of the present invention include that the metals pads are left exposed for the convenience of subsequent wiring and packaging processes. In addition, the LED provided by the present invention is a single light-mixing chip, which can be packaged directly without the need of coating fluorescent powders on the packaging glue. Because the fluorescent layer and the packaging glue are not processed simultaneously and are of different materials, the stress problem in the packaged LED can be reduced effectively.
摘要:
The present invention relates to a light-emitting diode (LED) and a method for manufacturing the same. The LED comprises an LED die, one or more metal pads, and a fluorescent layer. The characteristics of the present invention include that the metals pads are left exposed for the convenience of subsequent wiring and packaging processes. In addition, the LED provided by the present invention is a single light-mixing chip, which can be packaged directly without the need of coating fluorescent powders on the packaging glue. Because the fluorescent layer and the packaging glue are not processed simultaneously and are of different materials, the stress problem in the packaged LED can be reduced effectively.
摘要:
The present invention relates to a light-emitting diode (LED).The LED comprises an LED die, one or more metal pads, and a fluorescent layer. The characteristics of the present invention include that the metals pads are left exposed for the convenience of subsequent wiring and packaging processes. In addition, the LED provided by the present invention is a single light-mixing chip, which can be packaged directly without the need of coating fluorescent powders on the packaging glue. Because the fluorescent layer and the packaging glue are not processed simultaneously and are of different materials, the stress problem in the packaged LED can be reduced effectively.
摘要:
A light emitting diode (LED) with higher illumination efficiency is revealed. The LED includes a LED chip and an optical layer arranged on the bottom of the LED chip. The optical layer is a light-guiding layer, a light reflective layer or an energy-conversion layer that increases light emitting efficiency of the LED. Furthermore, a rough layer is disposed between the LED chip and the optical layer so as to increase surface area of the LED chip. Thus light emitted from the LED chip enters the optical layer more easily and the illumination efficiency of the LED is increased.
摘要:
A light emitting diode (LED) with higher illumination efficiency is revealed. The LED includes a LED chip and an optical layer arranged on the bottom of the LED chip. The optical layer is a light-guiding layer, a light reflective layer or an energy-conversion layer that increases light emitting efficiency of the LED. Furthermore, a rough layer is disposed between the LED chip and the optical layer so as to increase surface area of the LED chip. Thus light emitted from the LED chip enters the optical layer more easily and the illumination efficiency of the LED is increased.
摘要:
The present invention relates to a light-emitting diode (LED) and a method for manufacturing the same. The LED comprises an LED die, one or more metal pads, and a fluorescent layer. The characteristics of the present invention include that the metals pads are left exposed for the convenience of subsequent wiring and packaging processes. In addition, the LED provided by the present invention is a single light-mixing chip, which can be packaged directly without the need of coating fluorescent powders on the packaging glue. Because the fluorescent layer and the packaging glue are not processed simultaneously and are of different materials, the stress problem in the packaged LED can be reduced effectively.
摘要:
A light emitting diode includes a substrate, an N-doped layer disposed on the substrate, a plurality of cathodes disposed between the N-doped layer and the substrate, an active layer disposed on the N-doped layer, a P-doped layer disposed on the active layer, and a plurality of anodes disposed on the P-doped layer. The cathodes are electrically connected to the N-doped layer, and the patterns of the cathodes are disconnected from each other. The anodes are electrically connected to the P-doped layer, and the patterns of the anodes are disconnected from each other. Each cathode and a corresponding anode form a loop, and each loop is an independent loop.
摘要:
A method of manufacturing an oxynitride phosphor is revealed. A precursor is sintered under 0.1-1000 MPa nitrogen pressure for synthesis of an oxynitride phosphor. The general formula of the oxynitride phosphors is Ba3-XSi6O12N2:EuxBa3-XSi6O6N6:Eux or Ba3-XSi6O9N4:Eux (0.00001≦x≦5; 0.00001). Thus pure phosphor can be mass-produced.