Abstract:
In a heat-conducting module and a method for manufacturing the same, the heat-conducting module includes a heat-conducting base and a heat pipe. The surface of the heat-conducting base is formed with a groove. Both sides of the groove protrude upwards to form two side walls respectively. Both of the side walls are provided with hooks respectively that are engaged with each other. The heat pipe is accommodated in the groove of the heat-conducting base and is thus covered and sandwiched by the two side walls. Via this arrangement, the connection between the heat pipe and the heat-conducting base can be firm and steady. In this way, the tight contact between the heat pipe and the heat-conducting base can be increased and the heat-conducting efficiency of the heat-conducting module can be enhanced.
Abstract:
A method and a tool for manufacturing heat radiators are used to assemble a plurality of radiating fins to a heat transferring base. The method includes the steps of putting the radiating fins on the heat transferring base, putting blades between the radiating fins from at least one side of the heat transferring base, and pressing the blades to deform the heat transferring base to make the heat transferring base tightly fitted with the radiating fins. The tool includes a group of cutters and a pressing part. The cutter has blades having edges and pressing portions opposite to the edges. When the radiating fins are connected to the heat transferring base, the cutter may move between the radiating fins in a direction parallel to the heat transferring base. The pressing part is used for pressing the pressing portion to make the edges deform the heat transferring base, which forces the heat transferring base to be tightly fitted with the radiating fins.
Abstract:
An illumination device having an unidirectional heat-dissipating route, includes a heat sink and a LED light module. The heat sink includes a heat plate, a heat pipe and a heat-dissipating body. The heat pipe has a heat absorbing portion and a heat dissipating portion with a horizontal position different to that of the heat absorbing portion. The heat absorbing portion is connected to the heat plate, and a plurality of grooves is formed in the heat pipe to be communicated with the heat absorbing portion and the heat dissipating portion. The heat absorbing portion is lower than the heat dissipating portion. The heat-dissipating body is connected to the heat dissipating portion. The LED light module is connected to the heat plate. Thus the LEDs are protected and prevented from being destroyed by the heat, and the working life thereof is increased greatly.
Abstract:
An amplifying circuit is provided and includes a signal processor, an edge detector, and a calibration controller. The signal processor transforms amplitude information of a first and second input signals into time domain to provide first and second output signals respectively. The edge detector detects a polarity of a voltage offset from a timing relationship of the first and second output signals. The calibration controller compensates the voltage offset according to a change of the detected polarity.