Abstract:
A heat sink and a method for manufacturing the same. The heat sink is used to contact on a heat-generating source of an electronic device. The heat sink comprises a heat-conducting member and at least one heat pipe. With the bottom edge of a heat-absorbing end of the heat pipe contacting with the surface of the heat-generating source, and with the tight connection between the heat pipe and the heat-conducting member, the heat-conducting rate and the heat-dissipating performance of the heat sink can be greatly increase.
Abstract:
A heat dissipating module includes thermal conductive pipes and a thermal fin module. The thermal fin module made by pressing and stacking is mounted on the thermal conductive pipes. Next, a jig is set on a top surface of the thermal fin module, and a force compresses the thermal fin module, so as to reduce a distance between two fins of the thermal fin module. Then, a fixing plate is set above the thermal fin module on the thermal conductive pipes, and the jig is removed. Finally, the fixing plate is fixed on the thermal fin module, and the thermal fin module is securely fixed with the thermal conductive pipes. Therefore, the assembled heat dissipating module could not be loosed and deformed during delivery and the engaging contact between the fins and the thermal conductive pipes are enhanced, so to increase the heat dissipating effect of the heat dissipating module.
Abstract:
A heat dissipating device includes thermal conductive pipes and a plurality of thermal fin modules. Each thermal fin module made by pressing and stacking is mounted on the thermal conductive pipes. A retainer is located between each two thermal fin modules to compress the thermal fin module, so that a distance between two fins of the thermal fin module is reduced. Finally, a fixing plate is set above the last thermal fin module on the thermal conductive pipes to fix the thermal fin modules securely engaged with the thermal conductive pipes. Therefore, the assembled heat dissipating module could not be loosed and deformed during delivery and the engaging contact between the fins and the thermal conductive pipes are enhanced, so to increase the heat dissipating effect of the heat dissipating module.
Abstract:
In a heat sink and the manufacturing method thereof, the heat sink includes heat dissipation fins and heat pipes, and the heat dissipation fins have through holes for the heat pipes to pass through. The heat dissipating fins also have a notch formed at the peripheral of the through hole and communicating with the through hole, and openings formed at two sides of the notch, respectively. According to the manufacturing method, after the heat pipe is assembled with the heat dissipating fin, press strips pass through the openings and are pressed inwardly to reduce the notch to make the notch and the heat pipe plastically deformed. Finally the press strips are removed.
Abstract:
A heat dissipating module includes thermal conductive pipes and a thermal fin module. The thermal fin module made by pressing and stacking is mounted on the thermal conductive pipes. Next, a jig is set on a top surface of the thermal fin module, and a force compresses the thermal fin module, so as to reduce a distance between two fins of the thermal fin module. Then, a fixing plate is set above the thermal fin module on the thermal conductive pipes, and the jig is removed. Finally, the fixing plate is fixed on the thermal fin module, and the thermal fin module is securely fixed with the thermal conductive pipes. Therefore, the assembled heat dissipating module could not be loosed and deformed during delivery and the engaging contact between the fins and the thermal conductive pipes are enhanced, so to increase the heat dissipating effect of the heat dissipating module.
Abstract:
A heat dissipating device includes thermal conductive pipes and a plurality of thermal fin modules. Each thermal fin module made by pressing and stacking is mounted on the thermal conductive pipes. A retainer is located between each two thermal fin modules to compress the thermal fin module, so that a distance between two fins of the thermal fin module is reduced. Finally, a fixing plate is set above the last thermal fin module on the thermal conductive pipes to fix the thermal fin modules securely engaged with the thermal conductive pipes. Therefore, the assembled heat dissipating module could not be loosed and deformed during delivery and the engaging contact between the fins and the thermal conductive pipes are enhanced, so to increase the heat dissipating effect of the heat dissipating module.
Abstract:
An amplifier includes a sigma-delta modulating circuit, a power stage circuit, two feedback components, an error suppressing circuit, and a selecting circuit. The sigma-delta modulating circuit generates two input voltages according to two input signals or one single-ended signal. The power stage circuit provides two output voltages according to the two input voltages or an error adjusting voltage. The two feedback components are respectively coupled to two output terminals of the power stage circuit and two input terminals of the sigma-delta modulating circuits. The error suppressing circuit is used for providing the error adjusting voltage according to the two input voltages. The selecting circuit selects outputs depending on whether the two input voltages corresponding to different logic levels or an identical logic level for adjusting the power stage circuit to suppress a mismatch error between the two feedback components.
Abstract:
A sigma-delta modulator includes an adder, a filter, a quantizer, and a clock rate controller. The adder receives an input signal and an output signal to generate a summation signal. The filter is coupled to the adder and filters the summation signal to generate a filtered signal. The quantizer is coupled to the filter as well as the adder and quantizes the filtered signal to generate the output signal according to a first clock signal. The clock rate controller is coupled to the quantizer and generates the first clock signal, wherein a frequency of the first clock signal is variable.
Abstract:
A sigma-delta modulator includes an adder, a filter, a quantizer, and a clock rate controller. The adder receives an input signal and an output signal to generate a summation signal. The filter is coupled to the adder and filters the summation signal to generate a filtered signal. The quantizer is coupled to the filter as well as the adder and quantizes the filtered signal to generate the output signal according to a first clock signal. The clock rate controller is coupled to the quantizer and generates the first clock signal, wherein a frequency of the first clock signal is variable.
Abstract:
An amplifier includes a sigma-delta modulating circuit, a power stage circuit, two feedback components, an error suppressing circuit, and a selecting circuit. The sigma-delta modulating circuit generates two input voltages according to two input signals or one single-ended signal. The power stage circuit provides two output voltages according to the two input voltages or an error adjusting voltage. The two feedback components are respectively coupled to two output terminals of the power stage circuit and two input terminals of the sigma-delta modulating circuits. The error suppressing circuit is used for providing the error adjusting voltage according to the two input voltages. The selecting circuit selects outputs depending on whether the two input voltages corresponding to different logic levels or an identical logic level for adjusting the power stage circuit to suppress a mismatch error between the two feedback components.