摘要:
A tap cell includes a well region and a well pickup region on the well region; a VDD power rail; and a VSS power rail. A MOS capacitor includes a gate electrode line acting as a first capacitor plate, and the well pickup region acting as a part of a second capacitor plate. A first one of the first and second capacitor plates is coupled to the VDD power rail, and a second one of the first and second capacitor plates is coupled to the VSS power rail.
摘要:
A tap cell includes a well region and a well pickup region of the well region; a VDD power rail; and a VSS power rail. A MOS capacitor includes a gate electrode line acting as a first capacitor plate, and the well pickup region acting as a part of a second capacitor plate. A first one of the first and second capacitor plates is coupled to the VDD power rail, and a second one of the first and second capacitor plates is coupled to the VSS power rail.
摘要:
A seal ring for semiconductor devices is provided with embedded decoupling capacitors. The seal ring peripherally surrounds an integrated circuit chip in a seal ring area. The at least one embedded decoupling capacitor may include MOS capacitors, varactors, MOM capacitors and interdigitized capacitors with multiple capacitor plates coupled together. The opposed capacitor plates are coupled to different potentials and may advantageously be coupled to Vdd and Vss.
摘要:
Among other things, one or more techniques and/or systems for providing failsafe electrostatic discharge (ESD) protection are provided. In one embodiment, ESD protection is provided by connecting a voltage fail safe (VFS) supply voltage to an NWELL circuit interface (e.g., of a PMOS transistor) and connecting PAD to at least one of VFS or the NWELL circuit interface. To this end, circuitry to be protected from ESD (e.g., circuitry operably connected to PAD) is provided with failsafe ESD protection (e.g., such that a non-snapback NMOS device may be utilized to discharge ESD current, where a non-snapback NMOS generally consumes less semiconductor real estate and is less complex to produce as compared to a snapback NMOS), for example. In this manner, failsafe ESD protection is efficiently provided.
摘要:
A device includes a metal-oxide-semiconductor (MOS) device, which includes a gate electrode and a source/drain region adjacent the gate electrode. A first and a second contact plug are formed directly over and electrically connected to two portions of a same MOS component, wherein the same MOS component is one of the gate electrode and the source/drain region. The same MOS component is configured to be used as a resistor that is connected between the first and the second contact plugs.
摘要:
An electrostatic discharge (ESD) clamp includes a first power source configured to provide a first power supply voltage, a power supply node coupled to the first power source and receiving the power supply voltage; and a first NMOS transistor and a second NMOS transistor coupled in series and between the power supply node and a VSS node. The first NMOS transistor and the second NMOS transistor are low nominal VDD devices with maximum endurable voltages lower than the power supply voltage. The ESD claim further includes an ESD detection circuit including a capacitor coupled between the power supply node and a gate of the second NMOS transistor, and a resistor coupled between the gate of the second NMOS transistor and the VSS node.
摘要:
A high voltage buffer module used in an input/output buffer circuit coupled between a high voltage circuit and a low voltage circuit, operates between a first supply voltage and its complementary second supply voltage. A pull-up module, coupled between the first supply voltage and an output node, outputs the first supply voltage to the output node, in response to an input signal. A voltage detection circuit provides the pull-up module with at least one bias voltage selected from a predetermined set of voltage levels, wherein the voltage detection circuit selects the bias voltage upon detecting a reduction of the first supply voltage.
摘要:
An integrated circuit for level-shifting voltage signals comprising an input/output pad, and an input/output circuit coupled to the output pad having a plurality of devices operating with a bias supply voltage operable to shift between the range of the bias supply voltage to the range of an input/output supply voltage that is higher than the bias supply voltage is provided. In addition, an integrated circuit comprises an input circuit coupled to an input pad operable to input shift signals from an input/output supply voltage range to a core supply voltage range, an output circuit coupled to an output pad operable to shift output signals from a bias supply voltage range to an input/output supply voltage range, and a core circuit coupled to the input and output circuits and having a gate dielectric thickness substantially similar to a gate dielectric thickness of the input circuit and the output circuit.
摘要:
A dual-voltage three-state buffer circuit controls a post driver circuit to operate in a three-state mode and includes a tri-state logic control module operated under a low supply voltage, a level shifter for receiving one or more inputs from the tri-state logic control module and operating with an output control circuit for controlling two differential outputs of the level shifter, and a post driver circuit driven by the two differential outputs of the level shifter, wherein the level shifter, the output control circuit, an the post driver circuit are operated under a high supply voltage, and wherein when the tri-state logic control module generates the inputs for putting the post driver circuit in a high impedance state, the output control circuit operates with the level shifter to turn off the PMOS and NMOS transistors of the post driver circuit while isolating the level shifter from a high supply voltage.
摘要:
The present application discloses a semiconductor integrated circuit including a substrate having electrical devices formed thereon, a local interconnection layer formed over the substrate, and a global interconnection layer formed over the local interconnection layer. The local interconnection layer has a first set of conductive structures arranged to electrically connect within the individual electrical devices, among one of the electrical devices and its adjacent electrical devices, or vertically between the devices and the global interconnection layer. At least one of the first set of conductive structures is configured to have a resistance value greater than 50 ohms. The global interconnection layer has a second set of conductive structures arranged to electrically interconnect the electrical devices via the first set conductive structures.