摘要:
A non-volatile semiconductor memory that is erasable only in blocks is described. Each bit of the non-volatile semiconductor memory cannot be overwritten from a first logical state to a second logical state without a prior erasure. Each bit of the non-volatile semiconductor memory can be overwritten from a second logical state to a first logical state without a prior erasure. The non-volatile semiconductor memory comprises an active block for storing a first file, a reserve block for storing a second file, and a directory block. The second file is a copy of the first file. The copy is made during a clean-up operation prior to erasure of the active block. The directory block comprises a directory entry for identifying the first file.
摘要:
A non-volatile semiconductor memory that is erasable only in blocks is described. Each bit of the non-volatile semiconductor memory cannot be overwritten from a first logical state to a second logical state without a prior erasure. Each bit of the non-volatile semiconductor memory can be overwritten from a second logical state to a first logical state without a prior erasure. The non-volatile semiconductor memory comprises an active block for storing a first file, a reserve block for storing a second file, and a directory block. The second file is a copy of the first file. The copy is made during a clean-up operation prior to erasure of the active block. The directory block comprises a directory entry for identifying the first file.
摘要:
A nonvolatile memory card is described. The nonvolatile memory card includes a plurality of memories arranged in an array. Each of the plurality memories includes memory cells that are electrically programmable and electrically erasable. Each of the plurality of memories requires a device power supply voltage and a reprogramming voltage. The memory card also includes the device power supply input for receiving a power supply voltage for the memory card, and voltage conversion means coupled to receive the device power supply voltage at the power supply input for providing the device power supply voltage to the plurality of memories and for generating the reprogramming voltage for erasing and programming the plurality of memories. The voltage conversion means further includes (1) a charge pump coupled to the power supply input for generating the reprogramming voltage for erasing and programming the plurality of memories, and (2) a control logic coupled to the charge pump for allowing the charge pump to generate the reprogramming voltage. The control logic causes the charge pump not to generate the reprogramming voltage when the memory card does not require a reprogramming operation in order to protect data integrity of the memory card. When the memory card requires a reprogramming operation, the control logic causes the charge pump to generate the reprogramming voltage.