Abstract:
X-ray tube (11/12) for high dose rates, a corresponding method for generating high dose rates with X-ray tubes (11/12) as well as a method for producing corresponding X-ray devices (11/12), in which an anode (31/32) and a cathode (21/22) are disposed opposite each other in a vacuumized internal chamber (41/42), electrons e− being accelerated to the anode (31/32) by means of impressible high voltage. The anode (31/32) is made of a layer or coating of a metal having a high atomic number, for conversion of the electrons (e−) into X-ray radiation (γ) with cooling. The cathode (21/22) comprises a substrate substantially transparent for X-ray radiation (γ). In particular, the likewise substantially transparent for X-ray radiation (γ). In particular, the cathode (31/32) can close off the vacummized internal chamber (41/42) toward the outside.
Abstract:
Modular X-ray tube (10) and method for the production of such an X-ray tube, in which an anode (20) and a cathode (30) are arranged in a vacuumized inner space (40) situated opposite each other, electrons (e−) being produced at the cathode (30) and X-rays (y) at the anode (20). The X-ray tube (10) according to the invention comprises a multiplicity of acceleration modules (41, . . . , 45), complementing one another, and each acceleration module (41, . . . , 45) comprises at least one potential-carrying acceleration electrode (20/30/423/433/443). A first acceleration module (41) thereby comprises the cathode (30), a second acceleration module (45) the anode (20). The X-ray tube (10) further comprises at least one other acceleration module (42, . . . , 44). In particular, the X-ray tube according to the invention can possess a re-closeable vacuum valve, enabling individual defective parts of the tube (10) to be replaced in a simple manner or enabling the tube (10) to be modified in a modular way.
Abstract:
An electron exit window foil for use with a high performance electron beam generator operating in a corrosive environment is provided. The electron exit window foil comprises a sandwich structure having a film of Ti, a first layer of a material having a higher thermal conductivity than Ti, and a flexible second layer of a material being able to protect said film from said corrosive environment, wherein the second layer is facing the corrosive environment.
Abstract:
The present invention refers to a method for arranging a window foil to an electron exit window assembly of an electron beam generating device, comprises the steps of: arranging a foil support plate on a housing of the electron beam generating device, bonding a window foil to the foil support plate along a continuous bonding line, attaching a skirt of said window foil extending radially outside of the bonding line to the housing along a continuous attachment line. The invention also relates to an electron exit window assembly of an electron beam generating device.
Abstract:
An electron beam sterilizing device, comprises: an electron-generating filament; a beam-shaper; an output window; a high-voltage supply, capable of creating a high-voltage potential between the electron-generating filament and the output window, for acceleration of electrons; a high-voltage supply for driving current through the electron-generating filament; a control unit for controlling the operation of the electron beam sterilizing device. The electron beam sterilizing device has at least three operational states which include: an OFF-state, where there is no drive current through the electron-generating filament; an ON-state, where the electron-generating filament is kept at a temperature above the emission temperature so as to generate electrons for sterilization; and a standby state, between the OFF-state and ON-state, where the electron-generating filament is kept at a predetermined temperature just below the emission temperature. The control unit controls the device to assume the standby state.
Abstract:
A sensor is adapted to sense the intensity of an electron beam generated by an electron beam generator and exited from the generator through an exit window along a path towards a target within a target area. The sensor comprises at least one area of at least one conductive layer located within the path and connected to a current detector. The area, or areas, of the at least one conductive layer are shielded from the surrounding environment and from the exit window (and from one another when there are more than one area) by a shield. The shield is formed on the exit window. The sensor forms a part of a sensing system.
Abstract:
The present invention refers to a method for arranging a window foil to an electron exit window assembly of an electron beam generating device, comprises the steps of: arranging a foil support plate on a housing of the electron beam generating device, bonding a window foil to the foil support plate along a continuous bonding line, attaching a skirt of said window foil extending radially outside of the bonding line to the housing along a continuous attachment line. The invention also relates to an electron exit window assembly of an electron beam generating device.
Abstract:
The invention relates to an X-ray tube (11) with a cathode that emits electrons (e−) into an interior chamber (40) that is under vacuum, and with a target (31, 32), configured as an anode, for generating high-dose X-radiation (γ), the cathode comprising at least one cold cathode (21, 22, 23) based on an electron (e−) emitting material having a field-enhancing structure (70). The invention especially relates to an X-ray tube (11) having a cold cathode (21, 22, 23) that comprises at least one support layer (201) for holding the electron (e−) emitting material, the emission area of the cold cathode (21, 22, 23) being defined by the shape of the support layer (201).
Abstract:
The invention relates to an X-ray tube (11/12) for high dosing performances, a corresponding method for the production of high dosing performances with X-ray tubes (11/12) and method for the production of corresponding X-ray devices (11/12), wherein an anode (31/32) and a cathode (21/22) are arranged opposite each other in a vacuumed internal chamber (41/42). Electrons (e−) are accelerated by means of high voltage which can be applied to the anode (31/32). The anode (31/32) is made of a metal layer having a high ordinal number which is used to convert the electrons (e−) into X-ray radiation (Y) with the aid of a coolant. The cathode (21/22) comprises an essentially transparent carrier material for X-ray radiation (Y) and an essentially transparent electron emitter layer for X-ray radiation (Y). According to the invention, the cathode (31/32) can, in particular, close the vacuumed internal chamber (41/42) from the outside.
Abstract:
High voltage vacuum tube (9) with an anode (3) and a cathode (4), the anode (3) and/or the cathode (4) being electrically insulted by means of an annular insulator (21/22). The annular insulator (21/22) is designed arched once, humped in direction of the vacuumized inner space (6), the arch having in the direction of the vacuumized inner space (6) a sloping front area (31) and two lateral areas (30/33). The sloping front area (31) of the insulator (22) of the anode (3) slopes toward the disc center (7) of the insulator (22), while the sloping front area (31) of the insulator (21) of the cathode (4) slopes away from the disc center (7) of the insulator (21).