In-situ metalization monitoring using eddy current and optical measurements
    1.
    发明授权
    In-situ metalization monitoring using eddy current and optical measurements 有权
    使用涡流和光学测量进行原位金属化监测

    公开(公告)号:US06707540B1

    公开(公告)日:2004-03-16

    申请号:US09633800

    申请日:2000-08-07

    IPC分类号: G01N2100

    CPC分类号: G01N27/72

    摘要: Disclosed is a chemical mechanical polishing (CMP) system for polishing a sample with a polishing agent and monitoring the sample. The CMP system includes a polishing table, a sample carrier arranged to hold the sample over the polishing table, and an eddy probe. The polishing table and sample carrier are arranged to receive a polishing agent between the sample and the polishing table and to polish the sample by moving the polishing table and the sample carrier relative to each other. The eddy probe is arranged to be operable to obtain a measurement of the sample while the sample is being polished. The CMP system further includes an optical measurement device arranged to be operable to obtain a measurement of the sample while the sample is being polished. The CMP system also has a memory and a processor coupled with the memory. The processor and memory are adapted for operating the eddy probe and optical measurement device.

    摘要翻译: 公开了一种用抛光剂抛光样品并监测样品的化学机械抛光(CMP)系统。 CMP系统包括抛光台,布置成将样品保持在抛光台上的样品载体和涡流探针。 抛光台和样品载体布置成在样品和抛光台之间接收抛光剂,并通过相对于彼此移动抛光台和样品载体来抛光样品。 涡流探针布置成可操作以在样品被抛光时获得样品的测量。 CMP系统还包括光学测量装置,其布置成可操作以在样品被抛光时获得样品的测量。 CMP系统还具有与存储器耦合的存储器和处理器。 处理器和存储器适于操作涡流探针和光学测量装置。

    Apparatus and methods for performing self-clearing optical measurements
    2.
    发明授权
    Apparatus and methods for performing self-clearing optical measurements 有权
    用于执行自清除光学测量的装置和方法

    公开(公告)号:US06628397B1

    公开(公告)日:2003-09-30

    申请号:US09396143

    申请日:1999-09-15

    IPC分类号: G01N2155

    摘要: Disclosed is a self-clearing objective for directing a beam towards a sample and clearing away debris from an optical viewing path adjacent to the sample. The self-clearing objective includes an optical element and a substantially transparent fluid flowing between the optical element and the sample such that at least a portion adjacent to the sample is substantially cleared of debris. The optical element and the fluid cooperatively direct the beam towards the sample. This self-clearing objective may be coupled with various measurement devices to measure various characteristics of samples having debris that prevents clear optical measurements. Additionally, the measurement device may be integrated with or coupled to various sample processing systems so that the relevant process may be clearly monitored.

    摘要翻译: 公开了一种用于将光束引向样品并从邻近样品的光学观察路径清除碎屑的自清除目标。 自清除物镜包括在光学元件和样品之间流动的光学元件和基本上透明的流体,使得与样品相邻的至少一部分基本上被清除。 光学元件和流体协调地将光束引向样品。 这种自清除物镜可以与各种测量装置耦合,以测量具有防止清晰光学测量的碎片的样品的各种特性。 此外,测量装置可以与各种样品处理系统集成或耦合到可以清楚地监测相关过程。

    SYSTEM FOR SCATTEROMETRIC MEASUREMENTS AND APPLICATIONS
    3.
    发明申请
    SYSTEM FOR SCATTEROMETRIC MEASUREMENTS AND APPLICATIONS 有权
    SCATTERMETRIC测量和应用系统

    公开(公告)号:US20090195779A1

    公开(公告)日:2009-08-06

    申请号:US12410379

    申请日:2009-03-24

    IPC分类号: G01J4/00

    摘要: Instead of constructing a full multi-dimensional look-up-table as a model to find the critical dimension or other parameters in scatterometry, regression or other optimized estimation methods are employed starting from a “best guess” value of the parameter. Eigenvalues of models that are precalculated may be stored and reused later for other structures having certain common characteristics to save time. The scatterometric data that is used to find the value of the one or more parameter can be limited to those at wavelengths that are less sensitive to the underlying film characteristics. A model for a three-dimensional grating may be constructed by slicing a representative structure into a stack of slabs and creating an array of rectangular blocks to approximate each slab. One dimensional boundary problems may be solved for each block which are then matched to find a two-dimensional solution for the slab. A three-dimensional solution can then be constructed from the two-dimensional solutions for the slabs to yield the diffraction efficiencies of the three-dimensional grating. This model can then be used for finding the one or more parameters of the diffracting structure in scatterometry. Line roughness of a surface can be measured by directing a polarized incident beam in an incident plane normal to the line grating and measuring the cross-polarization coefficient. The value of the one or more parameters may then be supplied to a stepper or etcher to adjust a lithographic or etching process.

    摘要翻译: 不需要构建一个完整的多维查找表作为模型来查找散点图中的关键维度或其他参数,而是从参数的“最佳猜测”值开始采用回归或其他优化的估计方法。 预先计算的模型的特征值可以稍后存储并重用于具有某些共同特征的其他结构以节省时间。 用于查找一个或多个参数的值的散点数据可以限于那些对底层薄膜特性较不敏感的波长数据。 三维光栅的模型可以通过将代表性结构切片成一叠平板并且产生矩形块阵列来近似每个平板来构造。 可以为每个块解决一维边界问题,然后将其匹配以找到板的二维解。 然后可以从板的二维解决方案中构建三维解,以产生三维光栅的衍射效率。 然后,该模型可用于在散射测量中找到衍射结构的一个或多个参数。 可以通过将垂直于线光栅的入射平面中的偏振入射光束引导并测量交叉极化系数来测量表面的线粗糙度。 然后可以将一个或多个参数的值提供给步进器或蚀刻器以调整光刻或蚀刻工艺。

    System for Scatterometric Measurements and Applications
    4.
    发明申请
    System for Scatterometric Measurements and Applications 有权
    散射测量和应用系统

    公开(公告)号:US20080084567A1

    公开(公告)日:2008-04-10

    申请号:US11945949

    申请日:2007-11-27

    IPC分类号: G01B9/02 G01B11/24 G01J4/00

    摘要: Instead of constructing a full multi-dimensional look-up-table as a model to find the critical dimension or other parameters in scatterometry, regression or other optimized estimation methods are employed starting from a “best guess” value of the parameter. Eigenvalues of models that are precalculated may be stored and reused later for other structures having certain common characteristics to save time. The scatterometric data that is used to find the value of the one or more parameter can be limited to those at wavelengths that are less sensitive to the underlying film characteristics. A model for a three-dimensional grating may be constructed by slicing a representative structure into a stack of slabs and creating an array of rectangular blocks to approximate each slab. One dimensional boundary problems may be solved for each block which are then matched to find a two-dimensional solution for the slab. A three-dimensional solution can then be constructed from the two-dimensional solutions for the slabs to yield the diffraction efficiencies of the three-dimensional grating. This model can then be used for finding the one or more parameters of the diffracting structure in scatterometry. Line roughness of a surface can be measured by directing a polarized incident beam in an incident plane normal to the line grating and measuring the cross-polarization coefficient. The value of the one or more parameters may then be supplied to a stepper or etcher to adjust a lithographic or etching process.

    摘要翻译: 不需要构建一个完整的多维查找表作为模型来查找散点图中的关键维度或其他参数,而是从参数的“最佳猜测”值开始采用回归或其他优化的估计方法。 预先计算的模型的特征值可以稍后存储并重用于具有某些共同特征的其他结构以节省时间。 用于查找一个或多个参数的值的散点数据可以限于那些对底层薄膜特性较不敏感的波长数据。 三维光栅的模型可以通过将代表性结构切片成一叠平板并且产生矩形块阵列来近似每个平板来构造。 可以为每个块解决一维边界问题,然后将其匹配以找到板的二维解。 然后可以从板的二维解决方案中构建三维解,以产生三维光栅的衍射效率。 然后,该模型可用于在散射测量中找到衍射结构的一个或多个参数。 可以通过将垂直于线光栅的入射平面中的偏振入射光束引导并测量交叉极化系数来测量表面的线粗糙度。 然后可以将一个或多个参数的值提供给步进器或蚀刻器以调整光刻或蚀刻工艺。

    Overlay error detection
    5.
    发明授权

    公开(公告)号:US07009704B1

    公开(公告)日:2006-03-07

    申请号:US09697025

    申请日:2000-10-26

    IPC分类号: G01B11/00 G01K9/00

    CPC分类号: G03F7/70633 G01B11/272

    摘要: An overlay target with gratings thereon is illuminated and radiation scattered by the target is imaged onto detectors. A phase difference is then detected between the outputs of the detectors to find the mis-alignment error. In another aspect, an overlay target with gratings or box-in-box structures is illuminated and radiation scattered by the target is imaged onto detectors located away from the specular reflection direction of the illumination in a dark field detection scheme. Medium numerical aperture optics may be employed for collecting the radiation from the overlay target in a bright or dark field configuration so that the system has a larger depth of focus and so that the two structures of the target at different elevations can be measured accurately at the same time. Analytical functions are constructed for the grating type targets. By finding the phase difference between the two gratings at different elevations, misalignment errors can be detected. Analytical functions are constructed as a model for box-in-box type targets where data points away from the edges of the box or bars can be used in the curve fitting. Symmetrical functions are employed to further reduce noise.

    System for scatterometric measurements and applications
    6.
    发明授权
    System for scatterometric measurements and applications 有权
    散射测量和应用系统

    公开(公告)号:US07821654B2

    公开(公告)日:2010-10-26

    申请号:US12410379

    申请日:2009-03-24

    IPC分类号: G01B11/34 G01J4/00

    摘要: Instead of constructing a full multi-dimensional look-up-table as a model to find the critical dimension or other parameters in scatterometry, regression or other optimized estimation methods are employed starting from a “best guess” value of the parameter. Eigenvalues of models that are precalculated may be stored and reused later for other structures having certain common characteristics to save time. The scatterometric data that is used to find the value of the one or more parameter can be limited to those at wavelengths that are less sensitive to the underlying film characteristics. A model for a three-dimensional grating may be constructed by slicing a representative structure into a stack of slabs and creating an array of rectangular blocks to approximate each slab. One dimensional boundary problems may be solved for each block which are then matched to find a two-dimensional solution for the slab. A three-dimensional solution can then be constructed from the two-dimensional solutions for the slabs to yield the diffraction efficiencies of the three-dimensional grating. This model can then be used for finding the one or more parameters of the diffracting structure in scatterometry. Line roughness of a surface can be measured by directing a polarized incident beam in an incident plane normal to the line grating and measuring the cross-polarization coefficient. The value of the one or more parameters may then be supplied to a stepper or etcher to adjust a lithographic or etching process.

    摘要翻译: 不需要构建一个完整的多维查找表作为模型来查找散点图中的关键维度或其他参数,而是从参数的“最佳猜测”值开始采用回归或其他优化的估计方法。 预先计算的模型的特征值可以稍后存储并重用于具有某些共同特征的其他结构以节省时间。 用于查找一个或多个参数的值的散点数据可以限于那些对底层薄膜特性较不敏感的波长数据。 三维光栅的模型可以通过将代表性结构切片成一叠平板并且产生矩形块阵列来近似每个平板来构造。 可以为每个块解决一维边界问题,然后将其匹配以找到板的二维解。 然后可以从板的二维解决方案中构建三维解,以产生三维光栅的衍射效率。 然后,该模型可用于在散射测量中找到衍射结构的一个或多个参数。 可以通过将垂直于线光栅的入射平面中的偏振入射光束引导并测量交叉极化系数来测量表面的线粗糙度。 然后可以将一个或多个参数的值提供给步进器或蚀刻器以调整光刻或蚀刻工艺。

    System for scatterometric measurements and applications
    7.
    发明授权
    System for scatterometric measurements and applications 有权
    散射测量和应用系统

    公开(公告)号:US07301649B2

    公开(公告)日:2007-11-27

    申请号:US11192056

    申请日:2005-07-27

    IPC分类号: G01B11/34 G01J4/00

    摘要: Instead of constructing a full multi-dimensional look-up-table as a model to find the critical dimension or other parameters in scatterometry, regression or other optimized estimation methods are employed starting from a “best guess” value of the parameter. Eigenvalues of models that are precalculated may be stored and reused later for other structures having certain common characteristics to save time. The scatterometric data that is used to find the value of the one or more parameter can be limited to those at wavelengths that are less sensitive to the underlying film characteristics. A model for a three-dimensional grating may be constructed by slicing a representative structure into a stack of slabs and creating an array of rectangular blocks to approximate each slab. One dimensional boundary problems may be solved for each block which are then matched to find a two-dimensional solution for the slab. A three-dimensional solution can then be constructed from the two-dimensional solutions for the slabs to yield the diffraction efficiencies of the three-dimensional grating. This model can then be used for finding the one or more parameters of the diffracting structure in scatterometry. Line roughness of a surface can be measured by directing a polarized incident beam in an incident plane normal to the line grating and measuring the cross-polarization coefficient. The value of the one or more parameters may then be supplied to a stepper or etcher to adjust a lithographic or etching process.

    摘要翻译: 不需要构建一个完整的多维查找表作为模型来查找散点图中的关键维度或其他参数,而是从参数的“最佳猜测”值开始采用回归或其他优化的估计方法。 预先计算的模型的特征值可以稍后存储并重用于具有某些共同特征的其他结构以节省时间。 用于查找一个或多个参数的值的散点数据可以限于那些对底层薄膜特性较不敏感的波长数据。 三维光栅的模型可以通过将代表性结构切片成一叠平板并且产生矩形块阵列来近似每个平板来构造。 可以为每个块解决一维边界问题,然后将其匹配以找到板的二维解。 然后可以从板的二维解决方案中构建三维解,以产生三维光栅的衍射效率。 然后,该模型可用于在散射测量中找到衍射结构的一个或多个参数。 可以通过将垂直于线光栅的入射平面中的偏振入射光束引导并测量交叉极化系数来测量表面的线粗糙度。 然后可以将一个或多个参数的值提供给步进器或蚀刻器以调整光刻或蚀刻工艺。

    System for scatterometric measurements and applications
    8.
    发明申请
    System for scatterometric measurements and applications 有权
    散射测量和应用系统

    公开(公告)号:US20050274901A1

    公开(公告)日:2005-12-15

    申请号:US11192056

    申请日:2005-07-27

    摘要: Instead of constructing a full multi-dimensional look-up-table as a model to find the critical dimension or other parameters in scatterometry, regression or other optimized estimation methods are employed starting from a “best guess” value of the parameter. Eigenvalues of models that are precalculated may be stored and reused later for other structures having certain common characteristics to save time. The scatterometric data that is used to find the value of the one or more parameter can be limited to those at wavelengths that are less sensitive to the underlying film characteristics. A model for a three-dimensional grating may be constructed by slicing a representative structure into a stack of slabs and creating an array of rectangular blocks to approximate each slab. One dimensional boundary problems may be solved for each block which are then matched to find a two-dimensional solution for the slab. A three-dimensional solution can then be constructed from the two-dimensional solutions for the slabs to yield the diffraction efficiencies of the three-dimensional grating. This model can then be used for finding the one or more parameters of the diffracting structure in scatterometry. Line roughness of a surface can be measured by directing a polarized incident beam in an incident plane normal to the line grating and measuring the cross-polarization coefficient. The value of the one or more parameters may then be supplied to a stepper or etcher to adjust a lithographic or etching process.

    摘要翻译: 不需要构建一个完整的多维查找表作为模型来查找散点图中的关键维度或其他参数,而是从参数的“最佳猜测”值开始采用回归或其他优化的估计方法。 预先计算的模型的特征值可以稍后存储并重用于具有某些共同特征的其他结构以节省时间。 用于查找一个或多个参数的值的散点数据可以限于那些对底层薄膜特性较不敏感的波长数据。 三维光栅的模型可以通过将代表性结构切片成一叠平板并且产生矩形块阵列来近似每个平板来构造。 可以为每个块解决一维边界问题,然后将其匹配以找到板的二维解。 然后可以从板的二维解决方案中构建三维解,以产生三维光栅的衍射效率。 然后,该模型可用于在散射测量中找到衍射结构的一个或多个参数。 可以通过将垂直于线光栅的入射平面中的偏振入射光束引导并测量交叉极化系数来测量表面的线粗糙度。 然后可以将一个或多个参数的值提供给步进器或蚀刻器以调整光刻或蚀刻工艺。

    System for measuring periodic structures
    9.
    发明申请

    公开(公告)号:US20050099627A1

    公开(公告)日:2005-05-12

    申请号:US11016148

    申请日:2004-12-17

    IPC分类号: G01B11/00 G01J4/00

    摘要: A periodic structure is illuminated by polychromatic electromagnetic radiation. Radiation from the structure is collected and divided into two rays having different polarization states. The two rays are detected from which one or more parameters of the periodic structure may be derived. In another embodiment, when the periodic structure is illuminated by a poly chromatic electromagnetic radiation, the collected radiation from the structure is passed through a polarization element having a polarization plane. The element and the polychromatic beam are controlled so that the polarization plane of the element are at two or more different orientations with respect to the plane of incidence of the polychromatic beam. Radiation that has passed through the element is detected when the plane of polarization is at the two or more positions so that one or more parameters of the periodic structure may be derived from the detected signals. At least one of the orientations of the plane of polarization is substantially stationary when the detection takes place. To have as small a footprint as possible, one employs an optical device that includes a first element directing a polychromatic beam of electromagnetic radiation to the structure and a second optical element collecting radiation from the structure where the two elements form an integral unit or are attached together to form an integrated unit. To reduce the footprint, the measurement instrument and the wafer are both moved. In one embodiment, both the apparatus and the wafer undergo translational motion transverse to each other. In a different arrangement, one of the two motions is translational and the other is rotational. Any one of the above-described embodiments may be included in an integrated processing and detection apparatus which also includes a processing system processing the sample, where the processing system is responsive to the output of any one of the above embodiments for adjusting a processing parameter.

    System for MEMS inspection and characterization
    10.
    发明授权
    System for MEMS inspection and characterization 有权
    用于MEMS检测和表征的系统

    公开(公告)号:US06753528B1

    公开(公告)日:2004-06-22

    申请号:US10125820

    申请日:2002-04-18

    IPC分类号: G01N2117

    CPC分类号: B81C99/005

    摘要: A surface of the component in MEMS is illuminated by an illumination beam and the reflected beam is collected and detected by a position sensitive detector or photo detector array. As the surface is tilted about a pivot or about X and Y axes, the change in position of the collected beam is detected for characterizing the mechanical and optical properties of MEMS.

    摘要翻译: MEMS中的部件的表面被照明光束照射,并且通过位置敏感检测器或光电检测器阵列收集和检测反射光束。 当表面绕枢轴或约X轴和Y轴倾斜时,检测收集的光束的位置变化,以表征MEMS的机械和光学性质。