摘要:
A system for manufacturing a membrane electrode assembly for a fuel cell according to an embodiment of the present invention includes a catalyst solution preheating device, an carrying gas preheater, a cathode catalyst solution spray nozzle, and an anode catalyst solution spray nozzle. The catalyst solution preheating device preheats a cathode catalyst solution and an anode catalyst solution. The carrying gas preheater preheats an carrying gas. The cathode catalyst solution spray nozzle is supplied with the cathode catalyst solution preheated by the catalyst solution preheating device and the carrying gas preheated by the carrying gas preheater, and is configured to spray the supplied cathode catalyst solution. The anode catalyst solution spray nozzle is supplied with the anode catalyst solution preheated by the catalyst solution preheating device and the carrying gas preheated by the carrying gas preheater, and is configured to spray the supplied anode catalyst solution.
摘要:
The present invention relates to a gasketed membrane-electrode assembly comprising gaskets arranged on each side of a membrane-electrode assembly including a cathode, an anode, and a polymer electrolyte membrane, in which the gaskets are multilayered films comprising an elastic layer and an adhesive layer formed on each side of a support layer. According to the present invention, the gasket film can be united with the polymer electrolyte membrane, and the leakage of fuel gas and oxidizing gas decreases on operation of a fuel cell. In addition, various materials can be selected for each layer of the gasket. Thus, it can be suitable for mass production of a polymer fuel cell due to its simple manufacturing process.
摘要:
The present invention relates to a gasketed membrane-electrode assembly comprising gaskets arranged on each side of a membrane-electrode assembly including a cathode, an anode, and a polymer electrolyte membrane, in which the gaskets are multilayered films comprising an elastic layer and an adhesive layer formed on each side of a support layer. According to the present invention, the gasket film can be united with the polymer electrolyte membrane, and the leakage of fuel gas and oxidizing gas decreases on operation of a fuel cell. In addition, various materials can be selected for each layer of the gasket. Thus, it can be suitable for mass production of a polymer fuel cell due to its simple manufacturing process.
摘要:
Provided are an ion conductive resin fiber, an ion conductive hybrid membrane, a membrane electrode assembly and a fuel cell. The ion conductive resin fiber comprises an inner layer including an ion conductive resin; and an outer layer including an ion conductive resin having larger EW than the ion conductive resin of the inner layer, and surrounding the inner layer. The ion conductive resin fiber and the ion conductive hybrid membrane are excellent in ion conductivity, polar solvent stability and dimensional stability under low humidity conditions. The fuel cell manufactured using the same has advantages of stable operation and management of a system at ease, removal or reduction of components related to water management, and even in case of low relative humidity, operation at high temperature of 80° C. or higher.
摘要:
Provided are an ion conductive resin fiber, an ion conductive hybrid membrane, a membrane electrode assembly and a fuel cell. The ion conductive resin fiber comprises an inner layer including an ion conductive resin; and an outer layer including an ion conductive resin having larger EW than the ion conductive resin of the inner layer, and surrounding the inner layer. The ion conductive resin fiber and the ion conductive hybrid membrane are excellent in ion conductivity, polar solvent stability and dimensional stability under low humidity conditions. The fuel cell manufactured using the same has advantages of stable operation and management of a system at ease, removal or reduction of components related to water management, and even in case of low relative humidity, operation at high temperature of 80° C. or higher.
摘要:
A cathode for a fuel cell includes a gas diffusion layer contacting with a separator having a channel and a catalyst layer interposed between the gas diffusion layer and an electrolyte membrane. The catalyst layer of the cathode has two portions with different water-repelling properties, and a portion of the catalyst layer that does not face a channel has a higher water-repelling property than a portion that faces a channel. This cathode controls water-repelling property of the catalyst layer differently according to locations, so it is possible to keep an amount of moisture in an electrode in a suitable way and to restrain generation of flooding, thereby improving the performance of the cell.
摘要:
A cathode for a fuel cell includes a gas diffusion layer contacting with a separator having a channel and a catalyst layer interposed between the gas diffusion layer and an electrolyte membrane. The catalyst layer of the cathode has two portions with different water-repelling properties, and a portion of the catalyst layer that does not face a channel has a higher water-repelling property than a portion that faces a channel. This cathode controls water-repelling property of the catalyst layer differently according to locations, so it is possible to keep an amount of moisture in an electrode in a suitable way and to restrain generation of flooding, thereby improving the performance of the cell.
摘要:
The present invention relates to an electrode for a fuel cell including a catalyst layer that includes a catalyst portion containing a plurality of first catalyst particles dispersed in an ionomer binder resin; and an ionomer portion containing a plurality of second catalyst particles dispersed in an ionomer binder resin, and having a lower concentration of catalyst particles than the catalyst portion, wherein the ionomer portion has a shape of a wall or plural pillars in the catalyst portion. The electrode for a fuel cell according to the present invention has a separate ionomer portion in the catalyst layer, and thus has excellent ion conductivity in an electrode layer and the remarkably improved reaction surface area to enhance the performance of the fuel cell.
摘要:
The present invention relates to an apparatus and a method for fermenting, separating, and refining a product, which is produced by cultivating a microorganism. The apparatus and the method for fermenting, separating, and refining, of the present invention, can separate and refine the product that is produced by microbial fermentation in a simple, continuous manner and with high efficiency.
摘要:
Disclosed herein is an apparatus of a sensorless brush less direct current (BLDC) motor capable of rapidly driving the BLDC motor at a decreased speed. The apparatus includes: a switching unit configured to switch a direct current (DC) power depending on a plurality of pulse width modulation (PWM) signals to generate a three-phase alternating current (AC) power and apply the generated three-phase AC power to the BLDC motor to drive the BDLC motor; a plurality of voltage dividers configured to divide voltages of reverse electromotive forces generated in the BLDC motor; and a controlling unit configured to calculate a current rotation speed of the BLDC motor using output signals of the plurality of voltage dividers, generate the plurality of PWM signals depending on the calculated current rotation speed and a command rotation speed and output the plurality of PWM signals to the switching unit, divide a rotation phase angle of the BLDC motor into a speed decreasing region and a zero crossing point (ZCP) detecting region in the case of decreasing a rotation speed of the BLDC motor, decrease the rotation speed of the BLDC motor in the case in which the rotation phase angle of the BLDC motor is in the speed decreasing region, and detect ZCPs of the reverse electromotive forces in the case in which the rotation phase angle of the BLDC motor is in the ZCP detecting region. The apparatus may very rapidly decrease a speed of the BLDC motor to a required speed.