Fiber Reinforced Flexible Foams
    1.
    发明申请

    公开(公告)号:US20220259478A1

    公开(公告)日:2022-08-18

    申请号:US17736411

    申请日:2022-05-04

    Abstract: A flexible foam composition comprising a flexible foam structure comprising a plurality of struts, and a plurality of fibers, where a majority of the fibers are associated with the struts. The fibers may be thermally conductive fibers. The fibers include, but are not necessarily limited to, homopolymer and/or copolymer fibers having a glass transition temperature (Tg) of −50° C. (−58° F.) or greater, carbon fibers, animal-based fibers, plant-based fibers, metal fibers, and combinations thereof. The presence of fibers can impart to the flexible foam composition greater indentation force deflection (IFD), greater static thermal conductivity, improved compression set, improved height retention or durability, and/or a combination of these improvements. The flexible foam composition may be polyurethane foam, latex foam, polyether polyurethane foam, viscoelastic foam, high resilient foam, polyester polyurethane foam, foamed polyethylene, foamed polypropylene, expanded polystyrene, foamed silicone, melamine foam, among others.

    Thermally conductive nanomaterial coatings on flexible foam or fabrics

    公开(公告)号:US11597862B2

    公开(公告)日:2023-03-07

    申请号:US17197193

    申请日:2021-03-10

    Abstract: A flexible cellular foam or fabric product is coated with a coating including highly thermally conductive nanomaterials. The highly thermally conductive nanomaterials may be carbon nanomaterials, metallic, or non-metallic solids. The carbon nanomaterials may include, but are not necessarily limited to, carbon nanotubes and graphene nanoplatelets. The highly thermally conductive nanomaterials may include but are not limited to nano-sized solids that may include graphite flakes, for example. When coated on a surface of flexible foam, the presence of nanomaterials may impart greater thermal effusivity, greater thermal conductivity, and/or a combination of these improvements. The flexible foam product may be polyurethane foam, latex foam, polyether polyurethane foam, viscoelastic foam, high resilient foam, polyester polyurethane foam, foamed polyethylene, foamed polypropylene, expanded polystyrene, foamed silicone, melamine foam, among others.

    THERMALLY CONDUCTIVE NANOMATERIAL COATINGS ON FLEXIBLE FOAM OR FABRICS

    公开(公告)号:US20220290026A1

    公开(公告)日:2022-09-15

    申请号:US17197193

    申请日:2021-03-10

    Abstract: A flexible cellular foam or fabric product is coated with a coating including highly thermally conductive nanomaterials. The highly thermally conductive nanomaterials may be carbon nanomaterials, metallic, or non-metallic solids. The carbon nanomaterials may include, but are not necessarily limited to, carbon nanotubes and graphene nanoplatelets. The highly thermally conductive nanomaterials may include but are not limited to nano-sized solids that may include graphite flakes, for example. When coated on a surface of flexible foam, the presence of nanomaterials may impart greater thermal effusivity, greater thermal conductivity, and/or a combination of these improvements. The flexible foam product may be polyurethane foam, latex foam, polyether polyurethane foam, viscoelastic foam, high resilient foam, polyester polyurethane foam, foamed polyethylene, foamed polypropylene, expanded polystyrene, foamed silicone, melamine foam, among others.

Patent Agency Ranking