摘要:
A composite material having polymeric resin with disperse phases of reinforcing fibers and nanoparticle materials and its manufacture is disclosed herein. The nanoparticles may be bound together and added to the polymeric resin as microscale aggregations, and then unbound to create a disperse phase of nanoparticles in the resin. In other embodiments, the nanoparticles may be bound to a substrate, such as long fibers, and added to a polymeric resin. The nanoparticles are then unbound from the substrate and dispersed throughout the polymeric resin. The polymeric resin may have multiple components where one component may control the dispersion of the nanoparticles.
摘要:
A composite material having polymeric resin with disperse phases of reinforcing fibers and nanoparticle materials and its manufacture is disclosed herein. The nanoparticles may be bound together and added to the polymeric resin as microscale aggregations, and then unbound to create a disperse phase of nanoparticles in the resin. In other embodiments, the nanoparticles may be bound to a substrate, such as long fibers, and added to a polymeric resin. The nanoparticles are then unbound from the substrate and dispersed throughout the polymeric resin. The polymeric resin may have multiple components where one component may control the dispersion of the nanoparticles.
摘要:
Polymer extruded or expanded foams that contain modifier-free nanoclays are provided. The addition of modifier-free nano-clays to extruded or expanded foam products improves the thermal properties, mechanical properties, and fire performance properties. Water or a water-containing compound is used as a carrier for the modifier-free nanoclays. The final foamed products may be utilized in building application such as foamed insulation products and in underground applications such as highway insulation. A preferred modifier-free nanoclay is Na+MMT. Modifier-free nanoclay particles may be injected into a polymer during an extrusion foaming process. In another embodiment of the invention, polymer beads containing water/nanoclay particles are formed using inverse emulsion/suspension polymerizations and expanded or extruded into a foamed product. In a further embodiment, a modifier-free nanoclay particle is encapsulated in a super-absorbent material, which may be used in an expanding or extruding process.
摘要:
FIG. 1 is a perspective view of a light string showing my new design; FIG. 2 is another perspective view thereof; FIG. 3 is a front elevational view thereof; FIG. 4 is a rear elevational view thereof; FIG. 5 is a left side elevational view thereof; FIG. 6 is a right side elevational view thereof; FIG. 7 is a top plan view thereof; and, FIG. 8 is a bottom plan view thereof. The light string is shown with a symbolic break in its length and the appearance of any portion of the light string between the break lines form no part of the claimed design. The broken lines in the drawings depict portions of the light string that form no part of the claimed design.
摘要:
Disclosed is a waterproofing membrane that comprises a carrier sheet, a pressure sensitive adhesive layer on one surface of the carrier sheet, and a protective coating layer on the adhesive layer. The protective coating layer comprises a highly reflective protective coating layer operative to bond to concrete cast against it, particularly one that is produced from an aqueous coating comprising an acrylic emulsion, a filler, and a white pigment. The pigment volume concentration of the filler plus white pigment is greater than or equal to 55% by volume. The protective coating layer protects the membrane against weather exposure, tolerates foot traffic and strongly adheres to concrete cast against it. Also disclosed is a waterproofing membrane comprising a carrier sheet, a pressure sensitive adhesive layer, a protective coating layer, and a highly releasable bonding layer. The preferred highly releasable bonding layer comprises nanoscale silica and a binder.
摘要:
A composition comprising HFC-245fa, cyclopentane, and a third solvent component, wherein the composition is in a homogenous one-phase solution state at temperatures less than the boiling temperature of the composition, and uses thereof, including as blowing agents.
摘要:
The present invention relates to a multi-layer fluid delivery device for post-installation in-situ barrier creation. The device provides a medium for post-installation injection of remedial substances such as waterproofing polymeric resins or cementitious materials, insecticides, mold preventatives, rust retardants and the like. The device comprises a first layer and a second layer, with optionally an intermediate layer therebetween, and a plurality of tubes extending outwardly from the first layer. The first layer is preferably semi-permeable; the second layer is non-permeable; the optional intermediate layer is a void-inducing layer. The multi-layered device is attached to a structural substrate and a construction material such as concrete or shotcrete is applied against its surface (and around the plurality of tubes). Thereafter, a free flowing active substance can be injected through the tubes to fill the air space in the multi-layered device.
摘要:
Disclosed is a waterproofing membrane that comprises a carrier sheet, a pressure sensitive adhesive layer on one surface of the carrier sheet, and a protective coating layer on the adhesive layer. The protective coating layer is highly reflective (optionally textured) and operative to bond to concrete cast against it. Preferably, the protective coating layer comprises cement, polymer, and white pigment, and may optionally or additionally include a filler, a UV absorber and an antioxidant. The protective coating layer protects the membrane against weather exposure, tolerates foot traffic and strongly adheres to concrete cast against it. Also disclosed is a waterproofing membrane comprising a carrier sheet, a pressure sensitive adhesive layer, a protective coating layer (as described above), and a highly releasable bonding layer.
摘要:
A high-efficacy, long-acting, slow-release formulation of the poorly soluble drug, comprising solid dispersion of the poorly soluble drug, silica nanoparticles loaded with the poorly soluble drug, matrix material, and release enhancer, wherein the mass ratio of these components is solid dispersion of the poorly soluble drug: silica nanoparticles loaded with the poorly soluble drug: matrix material: release enhancer=1: 0.5˜1.25: 0.1˜0.3: 0.1˜0.3; the said solid dispersion of the poorly soluble drug contains povidone K30, soybean lecithin, and acrylic resin IV, wherein the mass ratio of the drug and the accessory materials is poorly soluble drug: povidone K30: soybean lecithin: acrylic resin IV=1: 1-3: 0.3˜0.8: 0.2˜0.5. Compared with the existing formulations, the in vivo half life of the high-efficacy, long-acting formulation of the poorly soluble drug disclosed in this invention is 2.3˜14.8 times longer while the mean residence time (MRT) of which is 7.94˜4.52 times longer; when tested in vivo in Beagle dogs, this new formulation of the poorly soluble drug presents a smoother concentration-time curve and reaches a continuous release for 72 hours. This invention discloses its preparation method.
摘要:
The present invention relates to a multi-layer fluid delivery device for post-installation in-situ barrier creation. The device provides a medium for post-installation injection of remedial substances such as waterproofing polymeric resins or cementitious materials, insecticides, mold preventatives, rust retardants and the like. The device comprises a first layer and a second layer, with optionally an intermediate layer therebetween, and a plurality of tubes extending outwardly from the first layer. The first layer is preferably semi-permeable; the second layer is non-permeable; the optional intermediate layer is a void-inducing layer. The multi-layered device is attached to a structural substrate and a construction material such as concrete or shotcrete is applied against its surface (and around the plurality of tubes). Thereafter, a free flowing active substance can be injected through the tubes to fill the air space in the multi-layered device.