Abstract:
According to the present invention, a carbon nanotube structure can be manufactured by merely a simple process in which carbon nanotubes are pulverized and mixed in a dispersion solvent without a dispersant, followed by freezing, and then the dispersion solvent is removed. Such a method does not require a dispersant and a binder so that the manufactured carbon nanotube structure can be composed of only carbon nanotubes, and does not depend on the other additives to form the carbon nanotube structure so that there is little possibility of damage and contamination of the structure during the collection procedure of the structure after the formation of the structure.
Abstract:
Disclosed is a method for manufacturing a homogeneous supported catalyst for carbon nanotubes. Advantageously, the method induces deep impregnation of a catalyst in micro pores of a support by using high-temperature aging impregnation, thus providing a high CNT yield.
Abstract:
Disclosed is a method for manufacturing a homogeneous supported catalyst for carbon nanotubes. Advantageously, the method induces deep impregnation of a catalyst in micro pores of a support by using high-temperature aging impregnation, thus providing a high CNT yield.
Abstract:
The present invention relates to a bundle-type carbon nanotube which has a bulk density of 25 to 45 kg/m3, a ratio of the bulk density to a production yield of 1 to 3, and a ratio of a tap density to the bulk density of 1.3 to 2.0, and a method for preparing the same.
Abstract:
The present invention relates to a fluidized bed reactor. The fluidized bed reactor includes: a catalyst bed; a dust collector provided in an upper portion of the fluidized bed reactor collecting catalyst particles in a gas discharged toward the upper portion of the fluidized bed reactor; and a filter portion provided in a region between the dust collector and the catalyst bed, wherein the filter portion includes a filtering screen and a plurality of conical caps coupled to the filtering screen.
Abstract:
Disclosed are carbon nanotubes and a method for manufacturing the same wherein the carbon nanotubes (CNTs) which comprise a three-component carbon nanotube catalyst containing a catalytic component and an active component and have a potato or spherical shape with a particle diameter distribution (Dcnt) of 0.5 to 1.0 can be manufactured at a high yield using an impregnated supported catalyst by simultaneously removing activity and a fine powder of the impregnated supported catalyst in an attempt to solve a drawback of conventional impregnation methods for producing CNTs, namely, the difficulty in improving a yield of CNTs.
Abstract:
Disclosed are carbon nanotubes and a method for manufacturing the same. Advantageously, the method provides a high yield of potato or sphere-shaped non-bundled carbon nanotubes having a bulk density of 80 to 250 kg/m3, an ellipticity of 0.9 to 1.0 and a particle diameter distribution (Dcnt) of 0.5 to 1.0 using a two-component carbon nanotube catalyst comprising a catalyst component and an active component.
Abstract translation:公开了碳纳米管及其制造方法。 有利地,该方法提供了高产量的马铃薯或球形非束状碳纳米管,其堆积密度为80至250kg / m 3,椭圆率为0.9至1.0,粒径分布(Dcnt)为0.5至1.0,使用 包含催化剂组分和活性组分的双组分碳纳米管催化剂。
Abstract:
Disclosed are carbon nanotubes and a method for manufacturing the same wherein the carbon nanotubes (CNTs) which comprise a three-component carbon nanotube catalyst containing a catalytic component and an active component and have a potato or spherical shape with a particle diameter distribution (Dcnt) of 0.5 to 1.0 can be manufactured at a high yield using an impregnated supported catalyst by simultaneously removing activity and a fine powder of the impregnated supported catalyst in an attempt to solve a drawback of conventional impregnation methods for producing CNTs, namely, the difficulty in improving a yield of CNTs.
Abstract:
The present invention relates to entangled-type carbon nanotubes which have a bulk density of 31 kg/m3 to 85 kg/m3 and a ratio of tapped bulk density to bulk density of 1.37 to 2.05, and a method for preparing the entangled-type carbon nanotubes.
Abstract:
The present invention relates to a carbon nanotube composition including entangled-type carbon nanotubes and bundle-type carbon nanotubes, wherein the carbon nanotube composition has a specific surface area of 190 m2/g to 240 m2/g and a ratio of specific surface area to bulk density of 0.1 to 5.29.