Abstract:
A secondary battery comprises an electrode assembly, a can, and an insulator. The electrode assembly includes a first electrode, a separator, and a second electrode alternately stacked and wound. The can has an accommodation part accommodating the electrode assembly therein, and the can comprises a first can and a second can having cylindrical shapes open in a direction facing each other. The insulator insulates an overlapping portion between the first can and the second can. The first can is electrically connected to the first electrode, and the second can is electrically connected to the second electrode. The insulator has a short-circuit induction through-part defined by a through-hole or a cutoff line, such that a short circuit occurs between the first can and the second can through the short-circuit induction through-part when it is deformed in shape as heat or a pressure is applied to contract or expand the insulator.
Abstract:
The present invention relates to a method and an apparatus for diagnosing low voltage of a secondary battery cell. The method for diagnosing low voltage of a secondary battery cell according to an embodiment of the present invention includes pre-aging a battery cell, charging the battery cell according to a preset charging condition, measuring a parameter for determining low voltage failure of the battery cell, comparing the measured parameter with a reference parameter, and performing formation when the battery cell is determined to be normal.
Abstract:
An apparatus for manufacturing a battery cell to enhance the electrolyte wettability to an electrode assembly in the battery cell is provided. The apparatus includes a battery cell tray in which one or more preliminary battery cells are housed and an excitation unit which makes a contact opposite to contacting one side of the battery cell tray to apply megasonic vibration to the preliminary battery cell in a state in which the preliminary battery cell is housed. A method for manufacturing a battery cell using the apparatus is also provided.
Abstract:
A secondary battery comprises an electrode assembly, a can, and an insulator. The electrode assembly includes a first electrode, a separator, and a second electrode alternately stacked and wound. The can has an accommodation part accommodating the electrode assembly therein, and the can comprises a first can and a second can having cylindrical shapes open in a direction facing each other. The insulator insulates an overlapping portion between the first can and the second can. The first can is electrically connected to the first electrode, and the second can is electrically connected to the second electrode. The insulator has a short-circuit induction through-part defined by a through-hole or a cutoff line, such that a short circuit occurs between the first can and the second can through the short-circuit induction through-part when it is deformed in shape as heat or a pressure is applied to contract or expand the insulator.
Abstract:
Provided is a composite electrode for a lithium secondary battery for improving output and a lithium secondary battery including the composite electrode, in which, in a composite electrode having two or more active materials mixed therein, an active material having a small particle size is included in the composite electrode by being coagulated and secondarily granulated so as to allow mixed active material particles to have a uniform size, and thus, electrical conductivity is improved to have high output characteristics.
Abstract:
Provided is a composite electrode for a lithium secondary battery for improving output and a lithium secondary battery including the composite electrode, in which, in a composite electrode having two or more active materials mixed therein, an active material having a small particle size is included in the composite electrode by being coagulated and secondarily granulated so as to allow mixed active material particles to have a uniform size, and thus, electrical conductivity is improved to have high output characteristics.
Abstract:
A secondary battery comprises an electrode assembly including a first electrode, a separator, and a second electrode alternately stacked and wound about a central axis. A first non-coating portion that is not coated with an electrode active material protrudes farther than the separator in a first direction along the central axis and a second non-coating portion that is not coated with the electrode active material protrudes farther than the separator in a second, opposite direction along the central axis. The first non-coating portion contacts a first connection part disposed on an end of a first can of the battery, and the second non-coating portion contacts a second connection part disposed on an end of a second can. At least one of the first connection part or the second connection part comprises a protrusion having a shape protruding towards the electrode assembly.
Abstract:
Disclosed is a current collector prepared by coating a primer on a metallic base and a magnesium secondary battery including the same. The primer includes a conductive material and a polymer material and enhances adhesive strength between a cathode current collector and an active material, thereby maintaining stability in an operating voltage range of the battery without increasing internal resistance.
Abstract:
A secondary battery having an electrode assembly in which a positive electrode, a separator, and a negative electrode are alternately stacked, and a can configured to accommodate the electrode assembly is provided. The negative electrode is disposed on an end of the electrode assembly in a direction of one side of the electrode assembly so that a negative electrode non-coating portion protrudes more than the separator with respect to a direction of a winding center axis of the electrode assembly. The positive electrode is disposed on an end of the electrode assembly in a direction of the other side of the electrode assembly so that a positive electrode non-coating portion protrudes more than the separator with respect to the direction of the winding center axis of the electrode assembly. The can includes a first can contacting the positive electrode and a second can contacting the negative electrode.
Abstract:
Disclosed is a lithium iron phosphate with an olivine crystal structure wherein the lithium iron phosphate has a composition represented by the following Formula 1 and carbon (C) is coated on the surface of the lithium iron phosphate by chemical bonding via a heterogeneous element other than carbon. Li1+aFe1−xMx(PO4−b)Xb (1) (wherein M, X, a, x, and b are the same as defined in the specification).