Abstract:
Disclosed herein is an integrated electrode assembly including a cathode, an anode, and a separation layer integrated between the cathode and the anode. The separation layer includes 3 phases including a liquid-phase component containing an ionic salt, which partially flows from the separation layer into the cathode and the anode during preparation of the integrated electrode assembly to increase ionic conductivity of the cathode and the anode, a solid-phase component supporting the separation layer between the cathode and the anode, and a polymer matrix having affinity for the liquid-phase component and providing binding force with the cathode and the anode.
Abstract:
Disclosed is a cathode mix for secondary batteries, comprising lithium iron phosphate, coated with carbon (C), having an olivine crystal structure that contains a compound represented by the following formula 1 as a cathode active material, wherein a mean particle diameter of primary particles in the cathode active material is 2 μm or less, and the cathode mix contains a hydrophilic conductive material as a conductive material. (1−x)Li1+aFe1−yMy(PO4−z)Az.xC (1) wherein M is at least one selected from Al, Mg, Ni, Co, Mn, Ti, Ga, Cu, V, Nb, Zr, Ce, In, Zn and Y, A is at least one selected from F, S and N, and 0
Abstract:
Disclosed is a polymer electrolyte having a multilayer structure including a first polymer layer providing mechanical strength against external force and a second polymer layer to secure a conduction path for lithium ions, wherein the first polymer layer includes an organic electrolyte containing an ionic salt in an amount of 0 wt % to 60 wt % based on a weight of a polymer matrix of the first polymer layer and the second polymer layer includes an organic electrolyte containing an ionic salt in an amount of 60 wt % to 400 wt % based on a weight of a polymer matrix of the second polymer layer, and a lithium secondary battery including the same.
Abstract:
Disclosed is an integrated electrode assembly having a structure in which a cathode, an anode, and a separation layer disposed between the cathode and the anode are integrated with one another, wherein the separation layer has a multilayer structure including at least one two-phase electrolyte including a liquid phase component and a polymer matrix and at least one three-phase electrolyte including a liquid phase component, a solid component, and a polymer matrix, wherein the polymer matrices of the separation layer are coupled to the cathode or the anode and the liquid phase components of the separation layer are partially introduced into an electrode in a process of manufacturing the electrode assembly.
Abstract:
Disclosed is a current collector prepared by coating a primer on a metallic base and a magnesium secondary battery including the same. The primer includes a conductive material and a polymer material and enhances adhesive strength between a cathode current collector and an active material, thereby maintaining stability in an operating voltage range of the battery without increasing internal resistance.
Abstract:
Disclosed is a polymer electrolyte having a multilayer structure including a first polymer layer providing mechanical strength against external force and a second polymer layer to secure a conduction path for lithium ions, wherein the first polymer layer includes an organic electrolyte containing an ionic salt in an amount of 0 wt % to 60 wt % based on a weight of a polymer matrix of the first polymer layer and the second polymer layer includes an organic electrolyte containing an ionic salt in an amount of 60 wt % to 400 wt % based on a weight of a polymer matrix of the second polymer layer, and a lithium secondary battery including the same.