Abstract:
Discussed is an apparatus for transmitting an encoded video stream, comprising: a slice generating unit that divides a frame, comprised in a video stream, into at least one or more slice; and a transmitting unit transmitting the slice in units of a packet within a slice deadline, which is a time limit required for transmission of the slice, the transmitting unit that preferentially transmits a header packet that contain a slice header information over other packets, and the slice header that comprises of information necessary for reconstructing the slice, wherein the transmitting unit comprises: a packet transmitter that retransmits the packet when the packet fails to be transmitted within the predetermined retry limit; and a header protector performing control for the header packet to be repeatedly transmitted within the slice deadline even when number of retransmissions of the header packet exceeds the predetermined retry limit.
Abstract:
Discussed is an apparatus for transmitting encoded video stream that may include an encoder configured to encode a video stream using a predetermined compression standard; a parser configured to subdivide the encoded video stream into a plurality of sub-streams and parse the sub-streams; a MUX configured to segregate a first data which is NAL unit having SPS, PPS, or slice header and a second data which is NAL unit having slice data from the parsed sub-stream; a first packet generator configured to generate a TCP packet using the first data by the sub-stream and transmit the TCP packet through a TCP tunnel; and a second packet generator configured to generate a UDP packet using the second data by the sub-stream and transmit the UDP packet through a UDP tunnel.
Abstract:
Discussed is an apparatus for recovering a motion vector to perform error concealment on received video stream, including: a first selecting unit selecting a first motion vector from a first slice that is above a lost slice, and selecting a second motion vector from a second slice that is below the lost slice; a second selecting unit determining at least one first orthogonal motion vector that is orthogonal to the first motion vector, and determining at least one second orthogonal motion vector that is orthogonal to the second motion vector; and a recovering unit computing a lost motion vector, comprised in the lost slice, using a weighted average of valid motion vectors, wherein the valid motion vectors include at least one of the first motion vector, the second motion vector, the first orthogonal motion vector, and the second orthogonal motion vector.
Abstract:
Provided are a timing controller for converting RGB data to WRGB data, a driving method thereof, and an LCD device using the same. The timing controller according to an embodiment includes a reception unit to receive input RGB data from an external device; a converter to convert the input RGB data into input WRGB data composed of W, R, G and B data; an aligner to convert one of the W, R, G, and B data into 0 to generate conversion WRGB data, the conversion WRGB data having bits less than the total number of bits composing the W, R, G, and B data; a controller to transfer the conversion WRGB data to an external memory; and a re-aligner to convert the conversion WRGB data received from the external memory into digital WRGB data corresponding to the input WRGB data, and to output the digital WRGB data.