Abstract:
Disclosed is a light emitting diode package that includes: a frame having a light emitting diode (LED) thereon; and a glass cell over the LED, the glass cell including a quantum dot dispersed in one of a resin and an organic solvent.
Abstract:
A pressure detecting includes a plurality of sensing cells arranged a plurality of rows and columns, each of the plurality of sensing cells including a pressure sensing element and a selection transistor. First driving signal lines are disposed in the rows, and the first driving signal lines are connected to the selection transistors of a first portion of the plurality of sensing cells in a respective row. Second driving signal lines are disposed in a portion of the plurality of rows, and the second driving signal lines are connected to the selection transistors of a second portion of the plurality of sensing cells in a respective row. First and second driving circuits are respectively connected to the first driving signal lines the second driving signal lines.
Abstract:
A display device includes: a substrate; a thin film transistor on the substrate; a first electrode, a light emitting diode and a second electrode sequentially on the thin film transistor; a barrier layer on the second electrode, the barrier layer including at least one organic layer; and a front film on the barrier layer, wherein the at least one organic layer includes a chemically self-healing material.
Abstract:
An electro-optical panel includes: an electro-optical element emitting a light or adjusting a transmittance of a light; and a stretch film including a polymeric material, wherein a main stretching axis direction of the stretch film is disposed within a range of ±30° with respect to a side of the electro-optical panel.
Abstract:
A substrate for a flexible display device according to an embodiment of the present invention may include a self-supporting film where a particle has a grafted polymer chain and is disposed in two dimensions or three dimensions through the grafted polymer chain.
Abstract:
A flexible display device includes an antireflective film on an image display surface of the flexible display device, wherein the antireflective film includes an antireflective layer disposed on at least one surface of a transparent resin film having flexibility and including inorganic particles and matrix resin, wherein a volumetric ratio of the inorganic particles in the antireflective layer is equal to or larger than 40 vol %, wherein a diameter of each of the inorganic particles is within a range of 5 to 200 nm, wherein a thickness of the antireflective layer is within a range of 50 to 200 nm, and wherein there is no crack when a bending test of the antireflective film is performed based on JIS K 5600-5-1 and using a cylindrical mandrel with a diameter of 2 mm.
Abstract:
A display device includes: a substrate; a thin film transistor on the substrate; a first electrode, a light emitting diode and a second electrode sequentially on the thin film transistor; a barrier layer on the second electrode, the barrier layer including at least one organic layer; and a front film on the barrier layer, wherein the at least one organic layer includes a chemically self-healing material.
Abstract:
A method of fabricating a liquid crystal display device includes forming a first alignment layer on a first substrate, forming a second alignment layer on a second substrate, disposing the first substrate and the second substrate such that the first alignment layer and the second alignment layer are spaced apart, forming a liquid crystal layer including liquid crystal molecules between the first alignment layer and the second alignment layer and forming an electrode layer on one of the first substrate and the second substrate, the electrode layer applying an electric field to the liquid crystal molecules along a direction parallel to the first and second substrates, the forming the first alignment layer including applying a copolymer solution including first moieties and second moieties, and the first moieties have affinity with the first substrate, and the second moieties have compatibility with the liquid crystal molecules and heating the first alignment layer.
Abstract:
A liquid crystal display device according to an embodiment includes a light source; a first substrate on which a first alignment layer is formed; a second substrate on which a second alignment layer is formed; a liquid crystal layer between the first and second alignment layers; and an electrode layer on one of the first and second substrates, the electrode layer applying an electric field to liquid crystal molecules of the liquid crystal layer along a direction parallel to the first and second substrates, wherein when the electric field is applied, the liquid crystal molecules are twistedly arranged from the second alignment layer to the first alignment layer.
Abstract:
An electro-optical panel includes: an electro-optical element emitting a light or adjusting a transmittance of a light; and a stretch film including a polymeric material, wherein a main stretching axis direction of the stretch film is disposed within a range of ±30° with respect to a side of the electro-optical panel.