Abstract:
There is disclosed a scroll compressor according to the present disclosure in which a discharge port is formed at a central portion thereof, and a pair of two compression chambers continuously moving toward the discharge port are formed, and a plurality of bypass portions are formed at each interval along a movement path of each compression chamber in the both compression chambers, and compression gradients of the both compression chambers are formed to be different from each other, wherein when an interval between a bypass portion closest to the discharge port and another bypass portion adjacent to the bypass portion among the bypass portions of each compression chamber is defined as a first interval, respectively, a first interval of a second bypass portion belonging to a compression chamber having a relatively larger compression gradient is formed to be smaller than that of a first bypass portion belonging to the other compression chamber between the both compressor chambers.
Abstract:
A scroll compressor is provided. The scroll compressor may include a fixed scroll including a fixed wrap, and an orbiting scroll including an orbiting wrap coupled to the fixed wrap to form a pair of compression chambers. An entire cross-sectional area of bypass holes formed at a compression chamber with a larger volume reduction gradient between the compression chambers may be formed to be larger than an entire cross-sectional area of bypass holes formed at the other compression chamber to prevent over-compression at the compression chamber with the larger volume reduction gradient, thereby enhancing an entire efficiency of the compressor.
Abstract:
A scroll compressor includes a discharge port formed at a central portion thereof, a pair of two compression chambers continuously moving toward the discharge port, and a plurality of bypass portions formed at each interval along a movement path of each compression chamber in the both compression chambers. Compression gradients of the both compression chambers are different from each other. An interval between a bypass portion closest to the discharge port and another bypass portion adjacent to the bypass portion among the bypass portions of each compression chamber is defined as a first interval. The first interval of a second bypass portion belonging to a compression chamber having a relatively larger compression gradient is smaller than the first interval of a first bypass portion belonging to the other compression chamber.
Abstract:
A scroll compressor includes a discharge port at a central portion, and a pair of scrolls that define two compression chambers continuously moving toward the discharge port, and a plurality of bypass portions defined at with an each interval along a compression path of each compression chamber. Compression gradients of the both compression chambers are different from each other. An interval between a bypass portion closest to the discharge port and another bypass portion is defined as a first interval. The first interval of a the bypass portion belonging to a compression chamber having a relatively larger compression gradient is smaller than that of the bypass portion belonging to the other compression chamber.
Abstract:
A scroll compressor is provided that may include a casing; a discharge cover fixed to an inner space of the casing, that divides the inner space of the case into a suction space and a discharge space; a main frame in the casing, and spaced from the discharge cover; an orbital scroll that performs an orbital motion on the main frame; a non-orbital scroll coupled to the main frame so as to be movable up and down with respect to the orbital scroll, that forms a suction chamber, an intermediate pressure chamber, and a discharge chamber together with the orbital scroll; and a back pressure plate provided between the discharge cover and the non-orbital scroll, that forms a back pressure chamber that communicates with the intermediate pressure chamber. With such a configuration, a bypass valve may be easily installed, and application of an overload minimized.
Abstract:
A scroll compressor is provided that may include a casing, an orbiting scroll and a non-orbiting scroll that suctions in a refrigerant from a suction space of the casing, compresses the suctioned refrigerant in a plurality of compression chambers, and discharges the compressed refrigerant into a discharge space of the casing, and a capacity varying device having a first valve and at least one second valve coupled with each other inside of the casing to selectively bypass a portion of the refrigerant in the plurality of compression chambers. With this structure, it is possible to prevent, in advance, refrigerant from being leaked outside of the scroll compressor, reduce pressure loss as a bypass flow path is shortened, reduce a size, weight, and manufacturing costs of the scroll compressor, and vary a capacity of the scroll compressor with a small operating force, and small power consumption.
Abstract:
A scroll compressor is provided, in which a balancing space may be formed on a sub frame to accommodate at least one balance weight, and an oil discharge hole may be formed on a main frame, thereby suppressing, all from being introduced into or remaining in the balancing space to minimize agitation loss due to oil agitation in the balancing space, and forming a thrust surface of the main frame adjacent to an axial center of the drive shaft to suppress axial leakage at a central portion of the orbiting scroll, reducing a size of the main frame to reduce a total weight of the compressor, facilitating a centering operation of the sub frame, and suppressing an outer diameter of the sub frame from being increased, thereby accomplishing miniaturization of the scroll compressor.
Abstract:
A scroll compressor is provided. The scroll compressor may include a communication hole formed in a fixed scroll for communicating a discharge space and a thrust bearing surface with each other. This may reduce frictional loss between the fixed scroll and an orbiting scroll. Further, if a high vacuum state is about to occur during operation of the compressor, refrigerant in the discharge space may be introduced into the compression chambers through the communication hole. This may prevent the occurrence of a high vacuum state to thereby prevent damage to the compressor. Additionally, when the compressor is stopped, a pressure equilibrium operation may be performed through the communication hole.
Abstract:
An oil level detecting device for a compressor and an air conditioning system having the same are provided. The oil level detecting device may be provided in a compressor including a compression device that introduces and compresses a working fluid, a driving device mechanically connected to the compression device that operates the compression device, and a case that accommodates the compression device and the driving device thereinside and having an oil storage space that stores oil at a lower portion thereof. The oil level detecting device may include a detector including a supporting portion configured to be attached to the case and a detecting portion that protrudes inside the case. At least one property of the detecting portion may vary according to an oil level inside the case. The oil level detecting device may also include a signal processor including an electronic element having at least one reference property. The signal processor may compare the at least one property of the detecting portion with the at least one reference property of the electronic element and outputs a control signal according to the result.
Abstract:
There is disclosed a scroll compressor according to the present disclosure in which a discharge port is formed at a central portion thereof, and a pair of two compression chambers continuously moving toward the discharge port are formed, and a plurality of bypass portions are formed at each interval along a movement path of each compression chamber in the both compression chambers, and compression gradients of the both compression chambers are formed to be different from each other, wherein when an interval between a bypass portion closest to the discharge port and another bypass portion adjacent to the bypass portion among the bypass portions of each compression chamber is defined as a first interval, respectively, a first interval of a second bypass portion belonging to a compression chamber having a relatively larger compression gradient is formed to be smaller than that of a first bypass portion belonging to the other compression chamber between the both compressor chambers.