Abstract:
A washing machine includes: a frame, a drum receiving laundry, a washing chamber including (i) a first housing defining an opening and a space into which the drum is inserted, (ii) a barrier surrounding the opening and coupled to the first housing, and (iii) a second housing surrounding a first surface of the barrier and coupled to the first housing, a storage tank receiving carbon dioxide to be supplied to the drum, a distillation chamber separating contaminants dissolved in liquid carbon dioxide, an electronic unit, and a configuration unit. The configuration unit includes a pipe moving the carbon dioxide, a first compressor and a second compressor compressing the carbon dioxide discharged after washing is completed in the drum and moving the compressed carbon dioxide into the storage tank, and an oil separator separating oil from the carbon dioxide compressed in the first compressor and the second compressor.
Abstract:
A linear compressor of the present invention comprises: a shell having a suction portion; a cylinder disposed in the shell and forming a compression space for a refrigerant; a piston arranged to axially reciprocate in the cylinder; and a spring device for inducing a resonant motion of the piston, wherein the spring device comprises a spring, a first supporter to which one side of the spring is connected and which moves together with the piston, and a second supporter to which the other side of the spring is connected, and each of the supporters has a coupling groove for fitting the spring therein.
Abstract:
A reciprocating compressor is provided that may include an outer stator; an inner stator provided at an inner side of the outer stator with a predetermined gap therebetween; a mover configured to perform a reciprocating movement in the gap between the outer stator and the inner stator; a piston coupled to the mover to perform a reciprocating movement therewith; a cylinder, into which the piston may be inserted to form a compression space while performing a reciprocating movement; a frame coupled to the cylinder; a first support member coupled to the outer stator and the frame; and a second support member separated from the first support member, but coupled to the inner stator and the frame, thereby facilitating concentricity of the motor and compressor device, as well as simplifying an assembly process as the motor and compressor device are divided into several blocks for assembly.
Abstract:
A reciprocating motor and a reciprocating compressor having a reciprocating motor are provided. The reciprocating motor may include a stator having a magnet coil, provided with an air gap respectively formed at both sides in an axial direction by interposing the magnet coil therebetween; a mover inserted into the stator, reciprocating with respect to the stator as at least one magnet is arranged at any one of the air gaps formed at both sides and a non-magnet is arranged at the other one of the air gaps; and a magnetic resonance spring that resonates the mover with respect to the stator using a force for moving toward low magnetic resistance between the mover and the stator. The reciprocating motor and the reciprocating compressor having a reciprocating motor may be downsized and lightweight, and may obtain high efficiency.
Abstract:
A transverse flux reciprocating motor and a reciprocating compressor having a transverse flux reciprocating motor are provided. The transverse flux reciprocating motor may include a stator wound with a magnet coil, a mover inserted into the stator and coupled with a magnet having opposite magnetic poles in an orthogonal direction with respect to a magnetic flux generated by the magnet coil, and a magnetic resonance spring that allows the mover to perform a resonance motion with respect to the stator using a force trying to move toward a side with low magnetic resistance between the stator and the mover, whereby the transverse flux reciprocating motor and the reciprocating compressor having a transverse flux reciprocating motor may be reduced in size and weight and obtain high efficiency.
Abstract:
A motor for a compressor, and a reciprocating compressor having the same, are provided. A winding coil may be formed by removing a bobbin from the winding coil, and then coating an insulating material on an outer circumferential surface of the winding coil, to allow heat and moisture generated by the winding coil to be emitted to outside and provide enhanced performance and reliability. As a bobbin is removed from the winding coil, a coil line may be wound on the removed portion of the bobbin to enhance an occupation ratio by the coil line on the same area, and thus enhance efficiency of the motor. An elastic member or an adhesive may be inserted or applied into a space between the winding coil and a coil insertion groove of an inner stator to minimize vibrations of a coil line. The insulating material, which is in the form of powder, may melt while the coil line is adhered as the self-bonding material melts, forming a coating layer. Accordingly, the winding coil may be easily fabricated, and fabrication costs of the winding coil may be reduced.
Abstract:
Provided is a linear compressor. Provided is a linear compressor. The linear compressor includes a shell defining an internal space, a compressor body disposed in the internal space, and a passage guide disposed between the shell and the compressor body. The passage guide may include a first guide part extending along an inner surface of the shell in an axial direction and a second guide part extending from the first guide part to the compressor body in a radial direction.
Abstract:
A transverse flux reciprocating motor and a reciprocating compressor having a transverse flux reciprocating motor are provided. The transverse flux reciprocating motor may include a stator wound with a magnet coil, a mover inserted into the stator and coupled with a magnet having opposite magnetic poles in an orthogonal direction with respect to a magnetic flux generated by the magnet coil, and a magnetic resonance spring that allows the mover to perform a resonance motion with respect to the stator using a force trying to move toward a side with low magnetic resistance between the stator and the mover, whereby the transverse flux reciprocating motor and the reciprocating compressor having a transverse flux reciprocating motor may be reduced in size and weight and obtain high efficiency.