Abstract:
The present invention relates to the manufacture of a hetero-element thin film and, particularly, to a method for manufacturing a doped metal chalcogenide thin film and the same thin film. The method for manufacturing a metal chalcogenide thin film of the present invention may comprise the steps of: supplying a first metal precursor that is gasified; supplying a second metal precursor that is gasified; supplying a chalcogen-containing gas; and reacting the first metal precursor, the second metal precursor, and the chalcogen-containing gas on a growing substrate at a first temperature condition to form a thin film.
Abstract:
An apparatus for manufacturing high quality graphene, a method for manufacturing the same and graphene manufactured by the method are disclosed. The apparatus for manufacturing graphene includes a first chamber for supplying a carbon source under a first condition, a second chamber for supplying a carbon source under a second condition, a connector for connecting the first chamber to the second chamber, and a feeder for continuously supplying a catalyst metal to the first chamber and the second chamber.
Abstract:
Disclosed is a water treatment device such as a water purifier. In particular, a water treatment device capable of producing sterilizing water is disclosed. The device includes a sterilizing water producing module for electrolyzing raw water to produce sterilizing water, wherein the sterilizing water producing module includes a plurality of first electrodes and a plurality of second electrodes arranged alternately with each other and spaced from each other, wherein the first and second electrodes have opposite polarities to each other, wherein a polarity of each of the first electrode and the second electrode is switchable to between a positive potential and a negative potential, such that the sterilizing water producing module operates such that a positive potential operation and a negative potential operation are alternately repeated, wherein a magnitude of voltage or current applied to the sterilizing water producing module under the negative potential operation is smaller than a magnitude of voltage or current applied to the module under the positive potential operation.
Abstract:
Disclosed is graphene. More particularly, disclosed are a method for manufacturing graphene to grow graphene with high quality and graphene manufactured by the same. The method includes preparing a thermal-expansion compensation substrate, forming a metal layer on the thermal-expansion compensation substrate, and forming graphene on the metal layer.
Abstract:
A graphene doped with different dopants and a method for preparing the same are disclosed. A method for preparing a multi-doped graphene includes: mixing a metal-based dopant and at least one organic-based dopant to prepare a doping solution; stacking a graphene layer on a substrate; and doping the graphene layer with the doping solution that includes the metal-based dopant and the at least one organic-based dopant. The method allows maintaining the transparency of the prepared graphene and minimizing the sheet resistance of the graphene while not damaging a substrate on which the graphene is stacked.
Abstract:
Disclosed is a light emitting device. More specifically, disclosed are an organic electroluminescent device display and a method for manufacturing the same. The organic electroluminescent device display includes a substrate, an organic electroluminescent device disposed on the substrate, a sealing cap for sealing the organic electroluminescent device, and a getter disposed inside the sealing cap, the getter comprising a graphene layer.
Abstract:
A method for manufacturing graphene using light capable of transferring and patterning graphene, and graphene manufactured using the method are disclosed. The method includes forming a graphene layer on a catalyst metal layer, attaching a support layer losing adhesion by light on the graphene layer, removing the catalyst metal layer, disposing a substrate on the graphene layer, and separating the support layer from the graphene layer by irradiating light to the support layer.