Abstract:
An electronic device having a proximity touch function is disclosed. The device includes a display unit; a bezel frame that surrounds the display unit; a plurality of light emitters located on the bezel frame and spaced apart from each other; a plurality of light receivers located on the bezel frame and spaced apart from each other; a noise remover located on the bezel frame and including a plurality of first holes spaced apart from each other and a plurality of second holes spaced apart from each other; and a cover located on the noise remover. Respective light emitters are located in respective first holes. Respective light receivers are located in respective second holes.
Abstract:
An electronic device having a proximity touch function is disclosed. The device includes a display unit; a bezel frame that surrounds the display unit; a plurality of light emitters located on the bezel frame and spaced apart from each other; a plurality of light receivers located on the bezel frame and spaced apart from each other; a noise remover located on the bezel frame and including a plurality of first holes spaced apart from each other and a plurality of second holes spaced apart from each other; and a cover located on the noise remover. Respective light emitters are located in respective first holes. Respective light receivers are located in respective second holes.
Abstract:
The present invention relates to a vehicle display device comprising: a display; a gesture sensing unit disposed in the vicinity of the display so as to generate a first sheet beam to be emitted in a first direction and a second sheet beam to be emitted in a second direction different from the first direction, and sensing a three-dimensional gesture of an object through the first and second sheet beams; and a processor for providing a control signal according to the three-dimensional gesture.
Abstract:
A device and method for generating vibrations in a portable terminal are disclosed. The device for generating vibrations comprises: a haptic actuator which is driven by a driving signal so as to generate vibrations; and a control unit for applying the driving signal to the haptic actuator, causing the haptic actuator to have a high impedance and controlling a start time of the driving signal of non-periodic pulses to be applied to the haptic actuator, on the basis of a counter-electromotive force signal generated by the haptic actuator.
Abstract:
A vehicle display apparatus includes a display, a plurality of light emitting units provided in the periphery of the display, a plurality of light receiving units provided in the periphery of the display, and a processor configured to calculate a position of an approaching external object based on levels of light signals received by the plurality of light receiving units. The plurality of light emitting units sequentially emits light, the plurality of light receiving units sequentially receives light in correspondence with sequential light emission of the plurality of light emitting units, and the processor calculates the position of the external object based on the levels of the light signals received by the plurality of light receiving units in correspondence with sequential light emission of the plurality of light emitting units. Accordingly, it is possible to stably detect the position of the external object positioned in front of the display.
Abstract:
Disclosed herein is a display apparatus including a curved display module having a curved surface bent in a y-axis direction, a surface overlay disposed on the front surface of the curved display module and having a refractive index differing from an air layer, at least one IR emitter arranged on the upper long side or the lower long side of the surface overlay and emitting IR light, and at least one first IR receiver arranged on the long side opposite the at least one first IR emitter and receiving the IR light emitted by the at least one IR emitter. The curved display apparatus may more accurately and effectively recognize touch input and thus, user convenience may be improved.
Abstract:
An electronic device having a function for sensing 2D and 3D touch which includes a display unit; a bezel frame unit; a plurality of light emitting units; a plurality of light receiving units; a light isolation unit configured to isolate a first light for sensing 2D touch and a second light for sensing 3D touch from the lights incident thereon from the light emitting units; a driving control unit configured to sequentially operate the plurality of the light emitting units; and a motion recognition unit configured to calculate a horizontal coordinate based on the quantity of the first light, to calculate a spatial coordinate based on the quantity of the second light, to extract a motion of the pointer based on the detected quantity of the light and to implement an operation corresponding to the extracted motion.
Abstract:
The present disclosure provides a proximity sensor including a light-emitting part that is configured to emit first light of a specific wavelength band, a light-receiving part that is configured to receive the first light and second light, the second light belonging to a different wavelength band from the first light, and a controller that is configured to recognize a proximate object based on the first light reflected by the proximate object, wherein the controller changes a light-reception range of the light-receiving part based on the second light.
Abstract:
A vehicle includes a display apparatus. The display apparatus includes a display unit, an optical sensor unit, a touch sensor unit, and a processor. The processor can determine whether a hand is located within a first distance range away from the display unit and whether the hand is located within a second distance range away from the display unit that is closer to the display unit than the first distance range. The optical sensor unit is configured to recognize the received light based on the hand being located within the first distance range, and the touch sensor unit is configured to recognize the hand based on the hand being located within the second distance range. The processor can cause the touch sensor unit to operate based on a determination that the hand has transitioned from being located within the first distance range to being located within the second distance range.