Abstract:
A liquid crystal display device and a method of fabricating the same are disclosed in the present invention. More specifically, the method includes the steps forming a gate line on the first substrate sequentially forming a first insulating layer, an amorphous silicon layer, and a metal layer on the first substrate, patterning the metal layer to form a data line, forming a second insulating layer on the data line, patterning the second insulating layer and the amorphous silicon layer to form a passivation layer and an active layer, respectively, forming a pixel electrode at a pixel region defined by the gate and data lines, assembling the first substrate and the second substrate having a black matrix thereon, wherein the black matrix vertically overlaps at least one boundary line defined by different exposures during step-and-repeat exposure processes; and forming a liquid crystal layer between the first and second substrates.
Abstract:
A TFT array substrate has a PAI pattern, and the PAI pattern has an over-etched portion of the pure amorphous silicon layer. This over-etched portion prevents a short between the pixel electrode and the pure amorphous silicon layer (i.e., the active layer). The over-etched portion also enables the aperture ratio to increase a gate line over a said substrate; a data line over the said substrate being perpendicular to the gate line; a passivation layer covering the data line, the passivation layer divided into a residual passivation layer and a etched passivation layer; a doped amorphous silicon layer formed under the data line and corresponding in size to the data line; a pure amorphous silicon layer formed under the doped amorphous silicon layer and having a over-etched portion in the peripheral portions, wherein the over-etched portion is over-etched from the edges of the residual passivation layer toward the inner side; an insulator layer under the pure amorphous silicon layer; a TFT formed near the crossing of the gate line and the data line; and a pixel electrode overlapping the data line and contacting the TFT.
Abstract:
An array substrate for use in a liquid crystal display device is fabricated by the steps of forming a first metal layer on a substrate, patterning the first metal layer to form a gate line, a gate electrode, a gate pad, a first shorting bar, and a second shorting bar, forming a gate insulation layer, a pure amorphous silicon layer, a doped amorphous silicon layer and a second metal layer to cover the patterned first metal layer, patterning the second metal layer and the doped amorphous silicon layer to form first, second and third through-holes and first and second grooves to expose a portion of the pure amorphous silicon layer, the first and second grooves creating an isolated portions of the second metal layer, forming a passivation layer to cover the patterned second metal layer, forming a source electrode, a drain electrode, a data line, a data pad, an insulating segment, and first, second and third contact holes, and forming a pixel electrode, a first connector and a second connector of a transparent conductive material.