Abstract:
Compositions, methods and kits are disclosed for use in simultaneously amplifying at least 20 specific STR loci of genomic nucleic acid in a single multiplex reaction, as are methods and materials for use in the analysis of the products of such reactions. Included in the present invention are materials and methods for the simultaneous amplification of 23 and 24 specific loci in a single multiplex reaction, comprising the 13 CODIS loci, the Amelogenin locus, an InDel and at least six to ten additional STR loci, including methods, kits and materials for the analysis of these loci.
Abstract:
Disclosed is a method of amplifying a nucleic acid sequence, wherein the method comprises subjecting a reaction mixture to at least one amplification cycle, wherein the reaction mixture comprises a double-stranded nucleic acid and at least two primers capable of annealing to complementary strands of the double-stranded nucleic acid and amplifying at least one short tandem repeat (STR) using a Family A DNA polymerase in a Fast PCR protocol having a two-step amplification cycle in 25 seconds or less. Also disclosed are real-time PCR methods using the two-step protocol and kits for STR profiling using the Fast PCR protocol.
Abstract:
Disclosed are primer set compositions, methods and kits for human identification using the highly complex sequence locus, SE33 (ACTBP2) in single and multiplex PCR reactions. Additionally, disclosed are three newly discovered single nucleotide polymorphisms (SNPs) within the SE33 locus that can cause discordance seen as mobility shift or allelic dropout. Also disclosed are kits useful in human identification.
Abstract:
The present teachings relate to improved methods, kits, and reaction mixtures for amplifying nucleic acids. In some embodiments a novel direct buffer formulation is provided which allows for the direct amplification of the nucleic acids in a crude sample with minimal sample purification.