摘要:
A technique for performing cache injection includes monitoring, at a host fabric interface, snoop responses to an address on a bus. When the snoop responses indicate a data block associated with the address is in a shared state, input/output data associated with the address on the bus is directed to a cache that includes the data block in the shared state and is located physically closer to the host fabric interface than one or more other caches that include the data block associated with the address in the shared state.
摘要:
A technique for performing cache injection includes monitoring, at a host fabric interface, snoop responses to an address on a bus. When the snoop responses indicate a data block associated with the address is in a shared state, input/output data associated with the address on the bus is directed to a cache that includes the data block in the shared state and is located physically closer to the host fabric interface than one or more other caches that include the data block associated with the address in the shared state.
摘要:
A technique for performing cache injection in a processor system includes monitoring, by a cache, addresses on a bus. Input/output data associated with an address of a data block stored in the cache is then requested from a remote node, via a network controller. Ownership of the input/output data is acquired by the cache when an address on the bus that is associated with the input/output data corresponds to the address of the data block stored in the cache.
摘要:
A technique for performing cache injection in a processor system includes monitoring, by a cache, addresses on a bus. Input/output data associated with an address of a data block stored in the cache is then requested from a remote node, via a network controller. Ownership of the input/output data is acquired by the cache when an address on the bus that is associated with the input/output data corresponds to the address of the data block stored in the cache.
摘要:
A technique for performing cache injection includes monitoring addresses on a bus in response to a cache injection instruction. Ownership of input/output data on the bus is acquired by a cache when an address on the bus (that is associated with the input/output data) corresponds to an address of a data block associated with the cache injection instruction.
摘要:
A technique for performing cache injection includes monitoring an instruction stream for a specific instruction sequence. Addresses on a bus are then monitored, at a cache, in response to detecting the specific instruction sequence a determined number of times. Ownership of input/output data on the bus is then acquired by the cache when an address on the bus (that is associated with the input/output data) corresponds to an address of a data block stored in the cache.
摘要:
A technique for performing cache injection includes monitoring, at a cache, addresses on a bus. Ownership of input/output data on the bus is then acquired by the cache when an address on the bus (that is associated with the input/output data) corresponds to an address of a data block stored in the cache. A replacement policy position of the data block is then modified (to increase a probability that the data block is consumed prior to ejection from the cache).
摘要:
Mechanisms for providing a cluster-wide system clock in a multi-tiered full graph (MTFG) interconnect architecture are provided. Heartbeat signals transmitted by each of the processor chips in the computing cluster are synchronized. Internal system clock signals are generated in each of the processor chips based on the synchronized heartbeat signals. As a result, the internal system clock signals of each of the processor chips are synchronized since the heartbeat signals, that are the basis for the internal system clock signals, are synchronized. Mechanisms are provided for performing such synchronization using direct couplings of processor chips within the same processor book, different processor books in the same supernode, and different processor books in different supernodes of the MTFG interconnect architecture.
摘要:
A system and method for performing dynamic request routing based on broadcast source request information are provided. Each processor chip in the system may use a synchronized heartbeat signal it generates to provide source request information to each of the other processor chips in the system. The source request information identifies the number of active source requests sent by the processor chip that originated the heartbeat signal. The source request information from each of the processor chips in the system may be used by the processor chips in determining optimal routing paths for data from a source processor chip to a destination processor chip. As a result, the congestion of data for processing at each of the processor chips along each possible routing path may be taken into account when selecting to which processor chip to forward data.
摘要:
A system for providing a cluster-wide system clock in a multi-tiered full graph (MTFG) interconnect architecture are provided. Heartbeat signals transmitted by each of the processor chips in the computing cluster are synchronized. Internal system clock signals are generated in each of the processor chips based on the synchronized heartbeat signals. As a result, the internal system clock signals of each of the processor chips are synchronized since the heartbeat signals, that are the basis for the internal system clock signals, are synchronized. Mechanisms are provided for performing such synchronization using direct couplings of processor chips within the same processor book, different processor books in the same supernode, and different processor books in different supernodes of the MTFG interconnect architecture.