摘要:
One method disclosed herein includes forming a plurality of source/drain contacts that are conductively coupled to a source/drain region of a plurality of transistor devices, wherein at least one of the source/drain contacts is a local interconnect structure that spans the isolation region and is conductively coupled to a first source/drain region in a first active region and to a second source/drain region in a second active region, and forming a patterned mask layer that covers the first and second active regions and exposes at least a portion of the local interconnect structure positioned above an isolation region that separates the first and second active regions. The method further includes performing an etching process through the patterned mask layer to remove a portion of the local interconnect structure, thereby defining a recess positioned above a remaining portion of the local interconnect structure, and forming an insulating material in the recess.
摘要:
One method disclosed herein includes forming a plurality of source/drain contacts that are conductively coupled to a source/drain region of a plurality of transistor devices, wherein at least one of the source/drain contacts is a local interconnect structure that spans the isolation region and is conductively coupled to a first source/drain region in a first active region and to a second source/drain region in a second active region, and forming a patterned mask layer that covers the first and second active regions and exposes at least a portion of the local interconnect structure positioned above an isolation region that separates the first and second active regions. The method further includes performing an etching process through the patterned mask layer to remove a portion of the local interconnect structure, thereby defining a recess positioned above a remaining portion of the local interconnect structure, and forming an insulating material in the recess.
摘要:
Methods are provided for designing a photolithographic mask and for fabricating a semiconductor IC using such a mask. In accordance with one embodiment a method for fabricating a semiconductor IC includes determining a design target for a region within the IC. An initial mask geometry is determined for the region having a mask opening and a mask bias relative to the design target. A sub-resolution edge ring having a predetermined, fixed spacing to an edge of the mask opening is inserted into the mask geometry and a lithographic mask is generated. A material layer is applied overlying a semiconductor substrate upon which the IC is to be fabricated and a layer of photoresist is applied overlying the material layer. The layer of photoresist is exposed through the lithographic mask and is developed. A process step is then performed on the material layer using the layer of photoresist as a mask.
摘要:
Shapes and orientations of contacts or other closed contours on an integrated circuit are characterized by calculating Elliptic Fourier descriptors. The descriptors are then used for generating design rules for the integrated circuit and for assessing process capability for the manufacturing of the integrated circuit. Monte Carlo simulation can be performed in conjunction with the elliptic Fourier descriptors.
摘要:
An inspection tool or inspection system can be utilized to determine whether the appropriate pattern is on a reticle. The reticle can be associated with EUV lithographic tools. The system utilizes an at least two wavelengths of light. The light is directed to the reticle at the at least two wavelengths of light.
摘要:
Disclosed are a method of reducing biological contamination in an immersion lithography system and an immersion lithography system configured to reduce biological contamination. A reflecting element and/or an irradiating element is used to direct radiation to kill biological contaminates present with respect to at least one of i) a volume adjacent a final element of the projection system or ii) an immersion medium supply device disposed adjacent the final element.
摘要:
Fluorine-passivated reticles for use in lithography and methods for fabricating and using such reticles are provided. According to one embodiment, a method for performing photolithography comprises placing a fluorine-passivated reticle between an illumination source and a target semiconductor wafer and causing electromagnetic radiation to pass from the illumination source through the fluorine-passivated reticle to the target semiconductor wafer. In another embodiment, a fluorine-passivated reticle comprises a substrate and a patterned fluorine-passivated absorber material layer overlying the substrate. According to another embodiment, a method for fabricating a reticle for use in photolithography comprises providing a substrate and forming a fluorine-passivated absorber material layer overlying the substrate.
摘要:
According to one exemplary embodiment, an optical polarizer positioned before a light source for use in semiconductor wafer lithography includes an array of aligned nanotubes. The array of aligned nanotubes cause light emitted from the light source and incident on the array of aligned nanotubes to be converted into polarized light for use in the semiconductor wafer lithography. The amount of polarization can be controlled by a voltage source coupled to the array of aligned nanotubes. Chromogenic material of a light filtering layer can vary the wavelength of the polarized light transmitted through the array of aligned nanotubes.
摘要:
A method of monitoring an immersion lithography system in which a wafer can be immersed in a liquid immersion medium. The method detects an index of refraction of the immersion medium in a volume of the immersion medium through which an exposure pattern is configured to traverse and determines if the index of refraction is acceptable for exposing the wafer with the exposure pattern. Also disclosed is a monitoring and control system for an immersion lithography system.
摘要:
A reflective mask or reticle configured to reduce reflections from an absorptive layer during lithography at a wavelength shorter than in a deep ultraviolet (DUV) range is disclosed herein. The reflective mask or reticle is configured to generate additional reflections which have a desirable phase difference with respect to the reflections from the absorptive layer. The additional reflections reduce or eliminate the reflections from the absorptive layer by destructive interference.