Abstract:
A subminiature circuit protector includes a substrate carrying a metal fuse element hermetically sealed in a glass sleeve cartridge. The fuse element may comprise a film deposited on the substrate, or, alternatively a metal strip or wire. Leads extend from opposing ends of the sleeve for connection in a circuit, and a gas is sealed in the sleeve to provide a suitable environment to improve operating lifetime and interrupting capability. A method for making a circuit protector includes placing a substrate carrying a fuse element in a glass sleeve and placing leads in contact with the fuse element. The assembly is heated in the presence of a gas below atmospheric pressure to a temperature sufficient to soften the glass. The pressure is then increased to cause the ends of the glass sleeve to form a hermetic seal about the leads.
Abstract:
A subminiature fuse is disclosed comprising two terminals (20, 30), two substrates (80, 90), a fusible conductor (140), an insulating coating (180), and a unitary housing (170). The unitary housing is protected from the interrupt arc by the substrates (80, 90) and the housing (170) is sealed to provide increased mechanical strength, thus reducing the risk of a catastrophic failure of the fuse. The upper portion of the fuse terminals are shaped into finger like projections (70) adaptable to mechanically holding the fusible conductor (140) and a substrate (80), thus facilitating the manufacturing process. In one embodiment the fusible conductor and adjacent portions of the terminals and substrates are coated with a insulating coating or adhesive (180). The insulating coating (180) conducts heat away from the fusible conductor (140) during normal operation. To further protect the housing in the event of a short circuit interruption, a substrate (90) is placed between the housing and the fusible conductor. The housing is sealed by ultrasonic welding or may be an insert molded plastic enclosure which is substantially devoid of air.
Abstract:
A manufacturing system is provided for automatic assembly, testing and/or packaging of a variety of products. The system is based on utilization of one or more robotic modules, each having a programmable servo-driven linear actuator of a rod type, combined with slides, and standardized extrusions that form guide rails and a frame to support the actuators. The standardized extrusions include a plurality of faces, with a groove formed in at least one of the faces. Each slide fits in one of the grooves and is attached to the actuator rod, which moves the slide along the guide rails. The guide rails provide structural support to the slides in every direction that a load is attached to the slides, and include grooves to direct the motion of the slides. Two or more such robotic modules, each being positioned in a Cartesian coordinate relationship to one another, complete a system. Each module houses a dedicated controller that operates its respective actuator. The dedicated controller, in turn, connects to a remote computer or industrial controller such that a programmed sequence for robotic motion can be provided by the computer to control movement in the system in all three Cartesian directions.
Abstract:
A unitary shell for a heating appliance is formed having first and second side panels and first and second end panels. The first end panel has first and second sub panels, each sub panel having a vertical edge and the vertical edges of the first and second sub panels being spaced apart to form an opening between the vertical edges. The first end panel allows the insertion of components through the opening during assembly of the heating appliance. An assembly for a heating appliance may also be formed including the unitary shell and a first heating element attached on the inside of the first side panel. A second heating element is attached on the inside of the second side panel. Each heating element includes at least one terminal adapted to receive a power signal and operates responsive to power being applied to the terminal to generate heat. Furthermore, a method of manufacturing an assembly for a toaster includes providing a shell having first and second side panels and first and second end panels. The first end panel has an opening. A first outer heating element is inserted through the opening and attached to the first side panel. A second outer heating element is inserted through the opening and attached to the second side panel. A center heating element is inserted through the opening and attached to the second end panel.
Abstract:
A flip chip Surface Mount Fuse is disclosed. This fuse is comprised of a generally rectangular insulating member having a groove across its full length. A fuse element is placed inside the elongated groove and thick film metallizations are provided, through printing techniques, on opposite sides of the insulating member inside the groove to secure the fuse element and to provide termination to the insulating member. The opening of the groove is filled with an electrically insulating coating. The coating can be applied to form a time delay fuse or a fast acting fuse. Fuses can be manufactured in any desired size.
Abstract:
A ceramic coating for a subminiature fuse includes sodium silicate and silicon dioxide applied over a subminiature fuse wire in slurry form. The coating gives the fuse arc quenching properties.
Abstract:
An adjustable multipoint docking system includes a plurality of adjustable grasping jaws that are aligned on a mounting surface and adapted to grab onto a wide variety of extending rings, such as conventional spacecraft adapter rings, of an on-orbit target spacecraft for various missions including spacecraft rescue, spacecraft transorbiting to a desired orbit, spacecraft transorbiting to a waste orbit, or spacecraft deorbiting.
Abstract:
We provide an overload fuse link that is generally used in cartridge type fuses along with a short-circuit fuse link. The overload fuse link is prepared from a solder alloy and is directly attached to the interior of one of the cartridge fuse terminals. The overload fuse link has an open bore opening at one end and a connector extending from the other end. The cartridge fuse which uses the fuse link also has an insulator through which the connector passes and the insulator separates the short circuit fuse link from the body section of the overload fuse link wherein when there is an overload, the fuse link connector electrically separates from the fuse link body section.
Abstract:
A microfuse (10) with a ceramic chip (12), thick film pads (14), fusible wire (16), attached to pads (14) without solder or flux, ceramic coating (18) and plastic body (20). External lead (24) configuration can be axial, radial or surface mount. The method of manufacturing the fuse (10) is improved by utilizing a wire bonding technique in order to improve the quality of the manufacturing process and increase the reliability in performance of the fuse and reduce manufacturing cost.
Abstract:
A subminiature fuse is disclosed comprising two terminals, a substrate, a fusible conductor, and a unitary housing. The unitary housing is sealed and provides increased mechanical strength, thus reducing the risk of a catastrophic failure of the fuse. The upper portion of the fuse terminals are shaped into finger like projections adaptable to mechanically fastening the fusible conductor and the substrate thereto thus facilitating the manufacturing process. In one embodiment the fusible conductor and adjacent portions of the terminals and substrate are coated with a ceramic coating or adhesive. The housing is sealed by utrasonic welding or preferably in an insert molded plastic enclosure which is substantially devoid of air.