Abstract:
Airborne wind energy conversion system a with flying wing, using a cable or belt to transmit motion to a rotor of a ground based electrical generator with high velocity, achieving high aerodynamic efficiency of the wings and high power for a given torque.
Abstract:
An airborne wind energy conversion system with a ground generator and unorthodox power capture or transfer means, including such embodiments as: a system with an ultra-long flexible wing, which serves both for power harvesting and power transfer; a system with a tethered wing, the tether having an airfoil cross section in at least a substantial part of its length and participating in power harvesting; a system with a very long semi-circular wing, harvesting and transferring wind power by its helical motion; a system in which a conventional wing both harvests wind power and excites waves in the tether, the waves transferring the power.
Abstract:
Airborne wind energy conversion system with a propeller (4102) and a ground generator (4107), comprising a cross wind flying wing (4101), in which mechanical energy is transferred from the wing to the ground generator using an endless belt (4105). Another airborne wind energy conversion system, comprising a rotor, formed by freely moving wings, transferring its mechanical power to a ground based generator via a belt. The system can utilize a ribbon, connecting the wings. The belt can move continuously or reciprocally. The rotor can be axial flow, cross flow, diagonal flow or 3D flow. Related AWECS raising and landing methods are disclosed.
Abstract:
One embodiment of vertical axis wind turbine, having a soft sail (101), receiving airfoil form in the relative air flow. The soft sail (101) is attached to a mast (102), connected to a rotating shaft (202), transferring motion to a generator or alternator (203). Another embodiment of vertical axis wind turbine, having a soft sail (1306), receiving its airfoil form from the relative air flow and centrifugal forces, acting on it. Other embodiments are described and shown.
Abstract:
A system and a method for gas transportation by air, in which the transported gas also creates at least some of the lift for the airship, transporting it. In the same time, a fluid cargo, which also serves as ballast, is loaded. One of the options is that some of the transported gas is carried in a compressed form within a strong vessel on the airship. Among other options for the fluid cargo is the same gas in liquefied form, sea water, fresh or brackish water, LPG and oil. Yet another option is carrying easily liquefied gas, which is evaporated and fills in the airship envelope on its way back. Other embodiments are disclosed, such as cooling the transported gas or using heated air or steam when the transported gas is unloaded. A network of airships, terminals and control stations for natural gas transportation by air and more can be used with multiple airships of this kind.
Abstract:
An airborne photovoltaic solar system, comprising a parabolic reflector-concentrator (110, 1210), spread by wind, a solar panel (102, 1202) raised to high altitude using at least one lighter than air balloon (103, 1201), tracking the sun using aerodynamic surfaces and/or changes in buoyancy, relying on wind and/or cold air to cool the solar panel in one embodiment, as well as related methods and variations and alternatives.
Abstract:
An airborne wind energy conversion system with a ground generator and unorthodox power capture or transfer means, including such embodiments as: a system with an ultra-long flexible wing, which serves both for power harvesting and power transfer; a system with a tethered wing, the tether having an airfoil cross section in at least a substantial part of its length and participating in power harvesting; a system with a very long semi-circular wing, harvesting and transferring wind power by its helical motion; a system in which a conventional wing both harvests wind power and excites waves in the tether, the waves transferring the power.
Abstract:
An airborne photovoltaic solar system, comprising a parabolic reflector-concentrator (110, 1210), spread by wind, a solar panel (102, 1202) raised to high altitude using at least one lighter than air balloon (103, 1201), tracking the sun using aerodynamic surfaces and/or changes in buoyancy, relying on wind and/or cold air to cool the solar panel in one embodiment, as well as related methods and variations and alternatives.
Abstract:
An airborne wind energy system with a rotary wing (a wind rotor) and a flying generator is disclosed. Among the features of the disclosed system: use of aerodynamic lift in combination with buoyant lift, supporting rotor blades with suspension cables, use of peripheral or mid-rotor power take off. Use of multiple rotary wings and other related methods and subcomponents are also described. Also, use of tether multi-legs (including tripods and quadro-pods) for support of airborne wind energy systems in flight is disclosed.
Abstract:
An improved wind power device for wind energy conversion or vehicle propulsion. Among many possibilities contemplated, the device may have a moving sail with tethered wings (101), moving in elliptical trajectory, utilize separate sheave (503) and cable drum (505), use a block and tackle (411), attached to the tether and utilize a cable having a flexible jacket with aerodynamically streamlined cross section (603).