摘要:
A method of displaying an image including receiving a plurality of corresponding to an image data, wherein each of the plurality of frames includes a plurality of color sub-frames; sequentially displaying the color sub-frames corresponding to a first frame in a first color sequence over time; and displaying the sub-frames corresponding to a second frame following the first frame in a second color sequence over time, wherein the first color sequence is different from the second color sequence.
摘要:
A transflective liquid crystal display has a plurality of pixel electrode layers corresponding to a plurality of color elements. A first pixel electrode layer has a first reflective region and a first transmissive region. A second pixel electrode layer has a second reflective region and a second transmissive region. A third pixel electrode layer has a third reflective region and a third transmissive region. The first reflective region is larger than the second reflective region, and the first reflective region is larger than the third reflective region.
摘要:
A transflective display device has an upper substrate, a lower substrate and a liquid crystal layer interposed therebetween. A reflective electrode layer is formed overlying the inner surface of the lower substrate to serve as a reflective area of a pixel electrode. A transparent electrode layer is formed overlying the inner surface of the lower substrate, in which the transparent electrode layer not covered by the reflective electrode layer serves as a transmissive area of a pixel electrode. A first polarizer is formed overlying the outer surface of the upper substrate. A second polarizer is formed overlying the outer surface of the lower substrate. An optical compensation plate is formed between the second polarizer and the lower substrate.
摘要:
A transflective liquid crystal display device having one or more substrates is provided. A light emitting device is disposed at an edge of one of the substrates, such as the lower substrate. An insulating layer is disposed on the lower substrate and is formed with a plurality of notches. Each notch has a first angled sidewall and a second angled sidewall. The second angled sidewall has an included angle from horizontal. A first reflective layer may also be provided on top of the insulating layer and extend onto the second angled sidewall. The first reflective layer on the second angled sidewall faces the light emitting device and may assist in reflecting light from the light emitting device.
摘要:
An array substrate for a transflective liquid crystal display device is disclosed. The array substrate includes a substrate; a plurality of scanning lines and data lines on the substrate, crossing each other to define a plurality of pixel regions; a transmissive electrode disposed in the transmission region; and a reflector disposed in the reflection region and not subjected to a voltage. A lateral field is generated in the reflection region. The transflective LCD of the present invention achieves the maximum light efficiency in both reflection and transmission modes.
摘要:
A transflective liquid crystal display device having one or more substrates is provided. A light emitting device is disposed at an edge of one of the substrates, such as the lower substrate. An insulating layer is disposed on the lower substrate and is formed with a plurality of notches. Each notch has a first angled sidewall and a second angled sidewall. The second angled sidewall has an included angle from horizontal. A first reflective layer may also be provided on top of the insulating layer and extend onto the second angled sidewall. The first reflective layer on the second angled sidewall faces the light emitting device and may assist in reflecting light from the light emitting device.
摘要:
A four color transflective liquid crystal display device is disclosed. Each main pixel area includes three primary color sub-pixel areas and a white sub-pixel area. Each primary color sub-pixel area includes a first transmissive portion and a first reflective portion. The white sub-pixel area includes a second reflective portion and a second transmissive portion. The second reflection reflects a substantively white light to raise display brightness in the reflective mode. Thus, the chromaticity of the reflective mode approaches that of the transmissive mode.
摘要:
A thin film transistor array substrate including a substrate, a plurality of scan lines disposed on the substrate, a plurality of data lines disposed on the substrate, a first pixel rows disposed on the substrate and a second pixel group disposed on the substrate is provided. The first pixel group has a first reflective region and a first transmissive region. The second pixel group has a second transmissive region and a second reflective region, the first pixel group and the second pixel group are controlled by the scan lines and the data lines and arranged alternatively along a column direction, wherein the first transmissive region is contiguous to the second transmissive region.
摘要:
A transflective liquid crystal display has a plurality of pixel electrode layers corresponding to a plurality of color elements. A first pixel electrode layer has a first reflective region and a first transmissive region. A second pixel electrode layer has a second reflective region and a second transmissive region. A third pixel electrode layer has a third reflective region and a third transmissive region. The first reflective region is larger than the second reflective region, and the first reflective region is larger than the third reflective region.
摘要:
An array substrate for a transflective liquid crystal display device is disclosed. The array substrate includes a substrate; a plurality of scanning lines and data lines on the substrate, crossing each other to define a plurality of pixel regions; a transmissive electrode disposed in the transmission region; and a reflector disposed in the reflection region and not subjected to a voltage. A lateral field is generated in the reflection region. The transflective LCD of the present invention achieves the maximum light efficiency in both reflection and transmission modes.