摘要:
Radiopaque polymers have a main chain and a plurality of amide groups which have bound to the amide nitrogen atom thereof an organohalide group that is pendant to the polymer main chain, the organo halide group including one or more iodine and/or bromine atoms thereon. The polymer may be a modified polyamide polymer, copolymer or block copolymer or a modified poly(meth)acrylamide or (meth)acrylamide copolymer or block copolymer. The polymers may be employed in medical devices and are useful for instance to track the movement of a catheter through the body or the inflation of a balloon at a site. The polymers may be made by coupling reactions performed on preexisting amide polymers.
摘要:
Particulate materials useful as fillers, reinforcing agents, radioopacifiers, or impact modifiers. The particulate material has an average particle size range of about 10,000 nm or less and comprises an organic-inorganic hybrid material that has a ceramic material network having organic polymer segments distributed throughout the ceramic network. The ceramic network may be prepared by a sol-gel technique. The particulate material may be compounded in thermoplastic polymer compositions useful in a variety of applications such as preparation of medical device components.
摘要:
The invention generally relates to internal (e.g., implantable, insertable, etc.) drug delivery devices which contain the following: (a) one or more sources of one or more therapeutic agents; (b) one or more first electrodes, (c) one or more second electrodes and (d) one or more power sources for applying voltages across the first and second electrodes. The power sources may be adapted, for example, to promote electrically assisted therapeutic agent delivery within a subject, including electroporation and/or iontophoresis. In one aspect of the invention, the first and second electrodes are adapted to have tissue of a subject positioned between them upon deployment of the medical device within the subject, such that an electric field may be generated, which is directed into the tissue. Furthermore, the therapeutic agent sources are adapted to introduce the therapeutic agents into the electric field. In another aspect, the therapeutic agent sources are polymeric regions that contain one or more types of ion-conductive polymers and one or more types of charged therapeutic agents. In yet another aspect, the therapeutic agent sources are polymeric regions that contain one or more types of electrically conductive polymers and one or more types of charged therapeutic agents.
摘要:
A medical device having at least one composite region thereon formed of composite material comprising a polymer and a fluorinated sol-gel derived ceramic. The composite material is useful as a coating material for imparting a low coefficient of friction to a substrate.
摘要:
Implantable or insertable medical devices that have one or more composite regions. These composite regions include polymer and sol-gel derived ceramic. The polymer and sol-gel ceramic may form bi-continuous phases or separate polymeric and sol-gel derived ceramic phases.
摘要:
The invention generally relates to internal (e.g., implantable, insertable, etc.) drug delivery devices which contain the following: (a) one or more sources of one or more therapeutic agents; (b) one or more first electrodes, (c) one or more second electrodes and (d) one or more power sources for applying voltages across the first and second electrodes. The power sources may be adapted, for example, to promote electrically assisted therapeutic agent delivery within a subject, including electroporation and/or iontophoresis. In one aspect of the invention, the first and second electrodes are adapted to have tissue of a subject positioned between them upon deployment of the medical device within the subject, such that an electric field may be generated, which is directed into the tissue. Furthermore, the therapeutic agent sources are adapted to introduce the therapeutic agents into the electric field. In another aspect, the therapeutic agent sources are polymeric regions that contain one or more types of ion-conductive polymers and one or more types of charged therapeutic agents. In yet another aspect, the therapeutic agent sources are polymeric regions that contain one or more types of electrically conductive polymers and one or more types of charged therapeutic agents.
摘要:
The invention generally relates to internal (e.g., implantable, insertable, etc.) drug delivery devices which contain the following: (a) one or more sources of one or more therapeutic agents; (b) one or more first electrodes, (c) one or more second electrodes and (d) one or more power sources for applying voltages across the first and second electrodes. The power sources may be adapted, for example, to promote electrically assisted therapeutic agent delivery within a subject, including electroporation and/or iontophoresis. In one aspect of the invention, the first and second electrodes are adapted to have tissue of a subject positioned between them upon deployment of the medical device within the subject, such that an electric field may be generated, which is directed into the tissue. Furthermore, the therapeutic agent sources are adapted to introduce the therapeutic agents into the electric field. In another aspect, the therapeutic agent sources are polymeric regions that contain one or more types of ion-conductive polymers and one or more types of charged therapeutic agents. In yet another aspect, the therapeutic agent sources are polymeric regions that contain one or more types of electrically conductive polymers and one or more types of charged therapeutic agents.
摘要:
A medical device having at least one composite region thereon formed of composite material comprising a polymer and a fluorinated sol-gel derived ceramic. The composite material is useful as a coating material for imparting a low coefficient of friction to a substrate.
摘要:
The invention relates generally to an implantable medical device for delivering a therapeutic agent to the body tissue of a patient, and a method for making such a medical device. In particular, the invention pertains to an implantable medical device, such as an intravascular stent, having a coating comprising an inorganic or ceramic oxide, such as titanium oxide, and a therapeutic agent.
摘要:
Nanoparticle precursor structures, nanoparticle structures, and composite materials that include the nanoparticle structures in a polymer to form a composite material. The nanoparticle structures have chemical linkage moieties capable of forming non-covalent bonds with portions of a polymer for the composite material. Such composite materials are useful as biomaterials in medical devices.