Abstract:
A battery system monitor includes cell measurement circuits (CMCs) that each measure a voltage at or current through a pair of terminals of a respective associated battery module from among a plurality of plurality of battery modules in a battery system. Wireless communication transceivers (WCTs), each associated with a different CMC, transmit voltage or current measurement information of the associated CMC across a wireless communication link. A controller receives the voltage or current measurement information from the wireless communication transceivers for monitoring the state of operation of the battery system. Battery system monitoring is improved through synchronization of clocks in different CMCs or WCTs to enable synchronous sampling of multiple battery modules, through systems for determining relative positions of battery modules in a series coupling of battery modules between terminals of the battery system, and through improvements to the reliability of wireless communication.
Abstract:
Technique for providing power to a powered device (PD) over a cable having first and second sets of twisted pairs, such as signal pairs and spare pairs. Power Sourcing Equipment (PSE) circuitry is coupled via a first switch to the second set, e.g. to the spare pairs. A switch control circuit turns the first switch off to enable the PSE circuitry to perform a prescribed operation in connection with the PD over only the first set, e.g. over the signal pairs, and turns the first switch on to enable the PSE circuitry to perform the prescribed operation in connection with the PD over the first and second sets.
Abstract:
A threshold detection circuit may sense when current between a power supply and a load reaches a current threshold level. The threshold detection circuit may include a transistor in series with the load; a feedback circuit that causes the voltage drop across the transistor to be constant while the transistor is conducting current between the power supply and the load; a constant current source that delivers a constant current into the load; and a comparator that indicates when the voltage drop across the transistor falls below a voltage threshold level.
Abstract:
A battery system monitor includes cell measurement circuits (CMCs) that each measure a voltage at or current through a pair of terminals of a respective associated battery module from among a plurality of plurality of battery modules in a battery system. Wireless communication transceivers (WCTs), each associated with a different CMC, transmit voltage or current measurement information of the associated CMC across a wireless communication link. A controller receives the voltage or current measurement information from the wireless communication transceivers for monitoring the state of operation of the battery system. Battery system monitoring is improved through synchronization of clocks in different CMCs or WCTs to enable synchronous sampling of multiple battery modules, through systems for determining relative positions of battery modules in a series coupling of battery modules between terminals of the battery system, and through improvements to the reliability of wireless communication.
Abstract:
A circuit for providing connection between a first node at a first voltage and a second node at a second voltage. The circuit has a first inductive element having a first terminal coupled to the first node, a first switching element coupled between a second terminal of the first inductive element and the second node, a second inductive element having a first terminal configured for receiving current from the second terminal of the first inductive element, and having a second terminal coupled to a third node, and a second switching element coupled between the first terminal of the second inductive element and the second node. The first and second switching elements are configured for providing alternating current flow paths between the first node and the second node.