摘要:
A thin film transistor (TFT) including a gate, a gate insulator, an oxide semiconductor channel layer, a source, and a drain is provided. The gate insulator covers the gate, while the oxide semiconductor channel layer is configured on the gate insulator and located above the gate. The oxide semiconductor channel layer includes a first sub-layer and a second sub-layer located on the first sub-layer. An oxygen content of the first sub-layer is lower than an oxygen content of the second sub-layer. The source and the drain are configured on a portion of the second sub-layer. In addition, a fabricating method of the above-mentioned TFT is also provided.
摘要:
A method of fabricating a pixel structure is provided. A gate electrode is formed on a substrate, and a dielectric layer is formed on the gate electrode. A patterned metal oxide semiconductor layer and a patterned metallic etching stop layer are formed on the dielectric layer above the gate electrode. A first conductive layer is formed to cover the patterned metallic etching stop layer and the dielectric layer. The first conductive layer is patterned by using the patterned metallic etching stop layer as an etching stop layer to form a source and a drain. A second conductive layer is formed to cover the source, the drain and the dielectric layer. The second conductive layer is patterned by using the patterned metallic etching stop layer as an etching stop layer to form a first electrode layer. The patterned metallic etching stop layer exposed between the source and the drain is removed.
摘要:
A thin film transistor (TFT) including a gate, a gate insulator, an oxide semiconductor channel layer, a source, and a drain is provided. The gate insulator covers the gate, while the oxide semiconductor channel layer is configured on the gate insulator and located above the gate. The oxide semiconductor channel layer includes a first sub-layer and a second sub-layer located on the first sub-layer. An oxygen content of the first sub-layer is lower than an oxygen content of the second sub-layer. The source and the drain are configured on a portion of the second sub-layer. In addition, a fabricating method of the above-mentioned TFT is also provided.
摘要:
A pixel structure is disclosed. The pixel structure includes a substrate, a first data line having at least one end formed on the substrate, a first insulation layer overlying the first data line and exposing a part of the end of the first data line, a shielding electrode disposed on the first insulation layer and overlapped with the first data line, a second data line formed on the first insulation layer and electrically connected to the exposed end of the first data line, a second insulation layer overlying the shielding electrode and the second data line, and a pixel electrode formed on the second insulation layer and overlapped with the shielding electrode. The invention also provides a method for fabricating the pixel structure.
摘要:
An LED backlight module. The LED backlight module comprises a printed circuit board, a plurality of LEDs, and a light transmissive material. The LEDs are disposed on the printed circuit board. The light transmissive material is coated on the printed circuit board. Particularly, the LEDs are embedded in the light transmissive material and arranged in a matrix.
摘要:
A liquid crystal display unit structure and the manufacturing method thereof are provided. The liquid crystal display unit structure comprises a patterned first metal layer with a first data line segment and a gate line on a substrate; a patterned dielectric layer covering the first data line and the gate line having a plurality of first openings and a second opening therein, a patterned etch stop layer having a first portion located above the first data line segment and a second portion; a patterned second metal layer including a common electrode line, a second data line segment, a source electrode and a drain electrode, wherein the first portion of the patterned etch stop layer is between the first data line segment and the common line; a patterned passivation layer and a patterned transparent conductive layer.
摘要:
A liquid crystal display unit structure and the manufacturing method thereof are provided. The method comprises the following steps: forming a patterned first metal layer with a first data line segment and a lower gate pad on a substrate; forming a patterned dielectric layer covering the first data line and the lower gate pad having a plurality of first openings and a second opening therein, forming a patterned second metal layer including a common line, a second data line segment and a upper gate pad, wherein the upper gate pad is electrically connected to the lower gate pad through the first openings, and the second data line segment is electrically connected to the first data line segment through the first openings; finally forming a patterned passivation layer and a patterned transparent conductive layer.
摘要:
A method of manufacturing a thin film transistor matrix substrate is provided. The first photo-mask process is used to define a gate electrode and a signal electrode. The second photo-mask process is used to obtain different thickness of a PR layer in different regions for forming a channel, gate electrode through holes, signal electrode through holes and conductive pads. The third photo-mask process is used to define a source, a drain, an upper signal electrode, a pixel electrode, gate electrode pads and signal electrode pads.
摘要:
A displaying device includes a substrate, a gate electrode formed on the substrate, a gate insulating layer, a gate a-Si region covering the gate electrode, a source metal region, a drain metal region, a data-line (DL) metal region, a passivation layer and a conductive layer. The gate a-Si region is formed on the gate insulating layer. The source and drain metal regions are formed on the gate a-Si region. The DL metal region is formed on the gate insulating layer and separated from the drain metal region at an interval. The passivation layer formed on the gate insulating layer covers the source, drain, and DL metal regions. The first and second vias of the passivation layer expose partial surfaces of the DL and drain metal regions respectively. The conductive layer formed on the passivation layer covers the first and second vias for electrically connecting the DL and drain metal regions.
摘要:
A method of fabricating a TFT and IPS with reduced masking operations includes a substrate, a gate, a layer of gate dielectric on the gate and surrounding substrate surface and a semiconducting metal oxide on the gate dielectric. A channel protection layer overlies the gate to define a channel area in the semiconducting metal oxide. A S/D metal layer is patterned on the channel protection layer and a portion of the exposed semiconducting metal oxide to define an IPS area. An organic dielectric material is patterned on the S/D terminals and at an opposed side of the IPS area. The S/D metal is etched to expose the semiconducting metal oxide defining a first IPS electrode. A passivation layer covers the first electrode and a layer of transparent conductive material is patterned on the passivation layer to define a second IPS electrode overlying the first electrode.