Abstract:
A method for queuing robots destined for a target location in an environment, includes determining if a first robot occupies the target location and if it is determined that the first robot occupies the target location, determining if a second robot destined for the target location has entered a predefined target zone proximate the target location. If the second robot has entered the predefined target zone, the method further includes navigating the second robot to a first queue location and causing the second robot to wait at the first queue location until the first robot no longer occupies the target location. The method also includes navigating the second robot to the target location after the first robot leaves the target location.
Abstract:
A method for performing tasks on items located in a space using a robot, the items being located proximate fiducial markers, each fiducial marker having a fiducial identification. The method includes receiving an order to perform a task on at least one item and determining the fiducial identification associated with the at least one item. The method also includes obtaining, using the fiducial identification of the at least one item, a set of coordinates representing a position of the fiducial marker with the determined fiducial identification, in a coordinate system defined by the space. The method further includes navigating the robot to the coordinates of the fiducial marker associated with said determined fiducial identification.
Abstract:
A method and system for docking a robot with a charger docking station, including receiving an initial pose and receiving a mating pose associated with the robot charger docking station, performing a first navigation from a location to the initial pose, and performing a second navigation of the robot from the initial pose to the mating pose. The second navigation may proceed substantially along an arc path from the initial pose to the mating pose, thereby, upon arriving at the mating pose, an electrical charging port of the robot mates with an electrical charging assembly. The arc path may be associated with a section of a unique circle having a radius and a center equidistant from the initial pose and the mating pose. Controlling for error may include a proportional control and/or weighted control or switching between the controls to maintain an error below a threshold.
Abstract:
A method for navigating a robot from a current pose to a goal pose. A map represents obstacles and free space within an area for robot navigation. A matching map pyramid and an exclusion map pyramid are constructed based on the map and decimations from a highest resolution to successively lower resolutions of the map pyramids. Current pose for navigating from a current location to a goal pose along a goal path includes determining a search area and creating a search heap. Scoring of search tasks on the search heap determines a best candidate pose at a highest resolution matching map, or expands the search heap with search tasks at the next higher resolution matching map. Expanding the search heap at the next higher resolution matching map avoids search tasks that would localize the robot in an exclusion zone.
Abstract:
A method and system for navigation of a robot along a goal path and avoiding obstacles. The method includes receiving goal pose for one or more robots and determining a goal path for a first robot while avoiding moving and fixed obstacles of a received obstacle map. A first objective function is evaluated to select a preferred velocity from a generated set of candidate velocities, the selecting based on one or more weighted cost functions. A set of velocity obstacles created based on the poses of the one or more robots and the preferred velocity is used in evaluating a second objective function to determine the motion of the robot in the next time cycle. Creating the set of velocity objects includes converting the preferred velocity from a non-holonomic to a holonomic velocity.
Abstract:
A method for queuing robots destined for a target location in an environment, includes determining if a first robot occupies the target location and if it is determined that the first robot occupies the target location, determining if a second robot destined for the target location has entered a predefined target zone proximate the target location. If the second robot has entered the predefined target zone, the method further includes navigating the second robot to a first queue location and causing the second robot to wait at the first queue location until the first robot no longer occupies the target location. The method also includes navigating the second robot to the target location after the first robot leaves the target location.
Abstract:
A method for queuing robots destined for a target location in an environment, includes determining if a first robot occupies the target location and if it is determined that the first robot occupies the target location, determining if a second robot destined for the target location has entered a predefined target zone proximate the target location. If the second robot has entered the predefined target zone, the method further includes navigating the second robot to a first queue location and causing the second robot to wait at the first queue location until the first robot no longer occupies the target location. The method also includes navigating the second robot to the target location after the first robot leaves the target location.
Abstract:
A robot system includes at least one robot configured to interact with a plurality of operators in a warehouse. The robot has a proximity detector configured to detect the presence of an operator of the plurality of operators when they are within a predetermined distance of the at least one robot. There is a processor configured to retrieve from a memory a set of operator interaction preferences for the operator detected. And, there is a display device configured to allow the at least one robot to interact with the detected operator based on the set of operator interaction preferences of the detected operator.
Abstract:
An electrical charging station for charging an autonomous robot with first and second cameras used for docking the autonomous robot with the electrical charging station. There is a front side cover with a surface, the front side cover including a first charging member configured to receive a second charging member on the autonomous robot when the autonomous robot is docked with the charging station for charging. There is a first fiducial surface including a first fiducial marker affixed to the first surface. The first fiducial surface defines a plane disposed at a first non-zero angle relative to a plane defined by the surface of the front side cover. There is a second fiducial surface including a second fiducial marker affixed to the second surface. The second fiducial surface defines a plane disposed at a second non-zero angle relative to the plane defined by the surface of the front side cover.
Abstract:
A method for generating a navigation map of an environment in which a plurality of robots will navigate, includes obtaining an image of the environment defined by a plurality of pixels, each having a cost value. The environment includes an image of a fixed object having a set of pixels corresponding to its location and having a first defined cost value. The method includes obtaining a planned path image for the robots, which include a first set of pixels corresponding to the location of each robot in the environment and a second set of pixels adjacent to the first set of pixels and extending along a planned path of travel toward a destination. The first set of pixels of each robot having the first defined cost value and the second set of pixels having a second defined cost value. The second defined cost value is less than the first defined cost value.